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Unit 3D Specialist Mathematics

Preface

The answers in the Sadler text book sometimes are not enough. For those times when your really need to see
a fully worked solution, look here.

It is essential that you use this sparingly!
You should not look here until you have given your best effort to a problem. Understand the problem here,

then go away and do it on your own.

Errors

If you encounter any discrepancies between the work here and the solutions given in the Sadler text book, it is
very likely that the error is mine. I have yet to find any errors in Sadler’s solutions. Mine, however, have not
been proofread as thoroughly and it is likely that there are errors in this work. Caveat discipulus!
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Unit 3D Specialist Mathematics CHAPTER 1

Chapter 1

Exercise 1A

1. The initial case, where n = 1,

1 =
1

2
(1)(1 + 1)

is true.

Assume the statement is true for n = k, i.e.

1 + 2 + 3 + 4 + . . .+ k =
1

2
k(k + 1)

Then for n = k + 1

1 + 2 + 3 + 4+ . . .+ k + (k + 1)

=
1

2
k(k + 1) + (k + 1)

= (
1

2
k + 1)(k + 1)

=
1

2
(k + 2)(k + 1)

=
1

2
(k + 1) ((k + 1) + 1)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Since the statement is true for n = 1 it follows by
induction that it is true for all integer n ≥ 1. �

2. The initial case, where n = 1:

L.H.S. = 1(1 + 1)

= 2

R.H.S. =
1

3
(1 + 1)(1 + 2)

= 2

= L.H.S.

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

1×2+2×3+3×4+. . .+k(k+1) =
k

3
(k+1)(k+2)

Then for n = k + 1:
1× 2 + 2× 3 + 3× 4+ . . .+ k(k + 1) + (k + 1)(k + 2)

=
k

3
(k + 1)(k + 2) + (k + 1)(k + 2)

= (
k

3
+ 1)(k + 1)(k + 2)

=
1

3
(k + 3)(k + 1)(k + 2)

=
k + 1

3
(k + 2)(k + 3)

=
k + 1

3
((k + 1) + 1) ((k + 1) + 2)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

3. The initial case, where n = 1 is given:

d

dx
(x1) = 1

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

d

dx
(xk) = kxk−1

Then for n = k + 1

d

dx
(xk+1) =

d

dx
(xxk)

=
d

dx
(x)(xk) + (x)

(
d

dx
(xk)

)
= xk + x

(
kxk−1

)
= xk + kxk

= (k + 1)xk

= (k + 1)x(k+1)−1

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

4. The initial case, where n = 1:

2 = 22 − 2

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

2 + 4 + 8 + . . .+ 2k = 2k+1 − 2

Then for n = k + 1

2 + 4 + 8 + . . .+ 2k + 2k+1 = 2k+1 − 2 + 2k+1

= 2(2k+1)− 2

= 2(k+1)+1 − 2

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

5. The initial case, where n = 1:

L.H.S. = 1(1 + 1)3

= 1

R.H.S. =
12

4
(1 + 1)(1 + 2)2

= 1

= L.H.S.

1



Exercise 1A Solutions to A.J. Sadler’s

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

13 + 23 + 33 + 43 + . . .+ k3 =
k2

4
(k + 1)2

Then for n = k + 1

13 + 23 + 33 + 43 + . . .+ k3 + (k + 1)3

=
k2

4
(k + 1)2 + (k + 1)3

=
k2

4
(k + 1)2 + (k + 1)(k + 1)2

=
k2 + 4(k + 1)

4
(k + 1)2

=
k2 + 4k + 4

4
(k + 1)2

=
(k + 2)2

4
(k + 1)2

=
(k + 1)2

4
(k + 2)2

=
(k + 1)2

4
((k + 1) + 1)

2

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

6. (a) For n = 2, (2n− 1) = 4− 1 = 3 and n2 = 4
hence

1 + 3 = 4

is consistent with the rule.

For n = 3, (2n− 1) = 6− 1 = 5 and n2 = 9
hence

1 + 3 + 5 = 9

is consistent with the rule.

Verify the other statements similarly.

(b) The initial case, where n = 1: 2n − 1 = 1
and

1 = 12

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

1 + 3 + 5 + . . .+ (2k − 1) = k2

Then for n = k + 1

1 + 3 + 5 + . . .+ (2k − 1) + (2(k + 1)− 1)

= k2 + (2(k + 1)− 1)

= k2 + 2k + 2− 1

= k2 + 2k + 1

= (k + 1)2

Thus if the statement is true for n = k it is
also true for n = k + 1.

Hence since the statement is true for n = 1
it follows by induction that it is true for all
integer n ≥ 1. �

7. The initial case, where n = 1:

1

2
=

2− 1

2

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

1

2
+

1

22
+

1

23
+ . . .+

1

2k
=

2k − 1

2k

Then for n = k + 1

1

2
+

1

22
+

1

23
+ . . .+

1

2k
+

1

2k+1

=
2k − 1

2k
+

1

2k+1

=
2(2k − 1)

2k+1
+

1

2k+1

=
2(2k − 1) + 1

2k+1

=
2k+1 − 2 + 1

2k+1

=
2k+1 − 1

2k+1

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

8. The initial case, where n = 1:

1

1(1 + 1)
=

1

1 + 1

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

1

1× 2
+

1

2× 3
+

1

3× 4
+ . . .+

1

k(k + 1)
=

k

k + 1

Then for n = k + 1

1

1× 2
+

1

2× 3
+ . . .+

1

k(k + 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2)

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

=
k + 1

(k + 1) + 1

2



Unit 3D Specialist Mathematics Exercise 1A

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

9. The initial case, where n = 1:

L.H.S. = 1(1 + 2)(1 + 4)

= 10

R.H.S. =
1

4
(1 + 1)(1 + 4)(1 + 5)

= 10

= L.H.S.

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

1× 3× 5 + 2× 4× 6 + . . .+ k(k + 2)(k + 4)

=
k

4
(k + 1)(k + 4)(k + 5)

Then for n = k + 1
1× 3× 5 + 2× 4× 6 + . . .

+ k(k + 2)(k + 4) + (k + 1)(k + 3)(k + 5)

=
k

4
(k + 1)(k + 4)(k + 5) + (k + 1)(k + 3)(k + 5)

= (k + 1)(k + 5)

(
k

4
(k + 4) + (k + 3)

)
=
k + 1

4
(k + 5) (k(k + 4) + 4(k + 3))

=
k + 1

4
((k + 1) + 4) (k2 + 4k + 4k + 12)

=
k + 1

4
((k + 1) + 4) (k2 + 8k + 12)

=
k + 1

4
((k + 1) + 4) (k + 2)(k + 6)

=
k + 1

4
((k + 1) + 4) ((k + 1) + 1) ((k + 1) + 5)

=
k + 1

4
((k + 1) + 1) ((k + 1) + 4) ((k + 1) + 5)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

10. The initial case, where n = 1: (x− 1) is a factor
of x1 − 1 since x− 1 = x1 − 1.

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

xk − 1 = a(x− 1)

Then for n = k + 1

xk+1 − 1 = x(xk)− 1

= x(xk − 1 + 1)− 1

= x(xk − 1) + x− 1

= ax(x− 1) + (x− 1)

= (ax+ 1)(x− 1)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

11. The initial case here is where n = 7, the first
integer value satisfying n > 6:

L.H.S. = 1× 2× 3× 4× 5× 6× 7

= 5040

R.H.S. = 37

= 2187

5040 > 2187

The statement is true for the initial case.

Assume the statement is true for n = k; k > 6,
i.e.

1× 2× 3× 4× . . .× k ≥ 3k

Then for n = k + 1

1× 2× 3× 4× . . .× k(k + 1) ≥ 3k(k + 1)

3k(k + 1) = 3k+1 k + 1

3
Now k > 6

k + 1 > 7

k + 1

3
> 1

∴ 3k(k + 1) > 3k+1

∴ 1× 2× 3× 4× . . .× k(k + 1) > 3k+1

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 7 it
follows by induction that it is true for all integer
n > 6. �

12. The initial case, where n = 1:

71 + 2× 131 = 7 + 26

= 33

= 3× 11

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

7k + 2× 13k = 3a, a ∈ I

Then for n = k + 1

7k+1 + 2× 13k+1 = 7× 7k + 13× 2× 13k

= 7× 7k + (7 + 6)× 2× 13k

= 7× 7k + 7× 2× 13k + 12× 13k

= 7(7k + 2× 13k) + 3(4× 13k)

= 7(3a) + 3(4× 13k)

= 3(7a+ 4× 13k)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

3



Miscellaneous Exercise 1 Solutions to A.J. Sadler’s

13. The initial case, where n = 1:

L.H.S. = 2

R.H.S. =
2

3
(1 + (−1)1+121

=
2

3
(1 + 2)

= 2

= L.H.S.

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

2−4+8−16+. . .+(−1)k+12k =
2

3
(1+(−1)k+12k)

Then for n = k + 1

2− 4+8− 16 + . . .+ (−1)k+12k + (−1)k+22k+1

=
2

3
(1 + (−1)k+12k) + (−1)k+22k+1

=
2

3
(1 + (−1)k+12k) + (−1)(−1)k+1(2)2k

=
2

3
(1 + (−1)k+12k)− 2(−1)k+12k

= 2

(
1 + (−1)k+12k

3
− (−1)k+12k

)
= 2

(
1 + (−1)k+12k

3
− 3(−1)k+12k

3

)
= 2

(
1 + (−1)k+12k − 3(−1)k+12k

3

)
= 2

(
1− 2(−1)k+12k

3

)
= 2

(
1− (−1)k+12k+1

3

)
= 2

(
1 + (−1)(−1)k+12k+1

3

)
= 2

(
1 + (−1)(k+1)+12k+1

3

)
=

2

3
(1 + (−1)(k+1)+12k+1)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

Miscellaneous Exercise 1

1. (a) (7 + 3i)(7− 3i) = 72 − (3i)2

= 49 + 9

= 58

(b) (5 + i)(5− 1i) = 52 − (i)2

= 25 + 1

= 26

(c) (3 + 2i)(2− 3i) = 6− 9i + 4i− 6i2

= 6− 5i + 6

= 12− 5i

(d) (1− 5i)2 = 1− 10i + 25i2

= 1− 10i− 25

= −24− 10i

(e)
3− 2i

2 + i
=

(3− 2i)(2− i)

(2 + i)(2− i)

=
6− 3i− 4i + 2i2

4− i2

=
6− 7i− 2

4 + 1

=
4− 7i

5
= 0.8− 1.4i

(f)
1 + 2i

3− 4i
=

(1 + 2i)(3 + 4i)

(3− 4i)(3 + 4i)

=
3 + 4i + 6i + 8i2

9− 16i2

=
3 + 10i− 8

9 + 16

=
−5 + 10i

25

=
−1 + 2i

5
= −0.2 + 0.4i

2. (a) z + w = 3− 4i− 4 + 5i

= −1 + i

(b) zw = (3− 4i)(−4 + 5i)

= −12 + 15i + 16i− 20i2

= −12 + 31i + 20

= 8 + 31i

(c) z̄ = 3 + 4i

(d) z2 = (3− 4i)2

= 9− 24i + 16i2

= 9− 24i− 16

= −7− 24i

4



Unit 3D Specialist Mathematics Miscellaneous Exercise 1

(e) zw = (8 + 31i)

= 8− 31i

(f) z̄w̄ = (3 + 4i)(−4− 5i)

= −12− 15i− 16i− 20i2

= −12− 31i + 20

= 8− 31i

(g) q = Re(w̄) + Im(z̄)i

= Re(−4− 5i) + Im(3 + 4i)i

= −4 + 4i

3. (1 + i)5 = 1 + 5(i) + 10(i2) + 10(i3) + 5(i4) + i5

= 1 + 5i− 10− 10i + 5 + i

= −4− 4i

4. (1− 3i)3 = 13 + 3(12)(−3i) + 3(1)(−3i)2 + (−3i)3

= 1− 9i + 27i2 − 27i3

= 1− 9i− 27 + 27i

= −26 + 18i

∴ Im
(
1− 3i)3

)
= 18

5. (a) 3× 2 = 6

(b) Re ((3− 2i)(2 + i)) = Re(6 + 3i− 4i− 2i2)

= Re(6 +−i + 2)

= 8

6. No working required.

7. (a) No working required.

(b) 6 cis
5π

3
= 6 cis

(
5π

3
− 2π

)
= 6 cis

(
5π

3
− 6π

3

)
= 6 cis

(
−π

3

)
8. (a) No working required

(b) No working required

(c) zw = (8× 2) cis

(
3π

4
+
π

3

)
= 16 cis

13π

12

= 16 cis

(
13π

12
− 2π

)
= 16 cis

(
−11π

12

)
(d) Use the commutative property of multipli-

cation and no working is needed.

(e) iw =
(

cis
π

2

)(
2 cis

π

3

)
= 2 cis

(π
3

+
π

2

)
= 2 cis

5π

6

(f) iz = 8 cis

(
3π

4
+
π

2

)
= 8 cis

5π

4

= 8 cis

(
5π

4
− 2π

)
= 8 cis

(
−3π

4

)
(g)

z

w
=

8

2
cis

(
3π

4
− π

3

)
= 4 cis

5π

1
2

(h) No working required.

9. The initial case, where n = 1,

L.H.S. = 5(1 + 20) + 2

= 12

R.H.S. = 1(1 + 6) + 5(21 − 1)

= 7 + 5

= 12

= L.H.S.

is true.

Assume the statement is true for n = k, i.e.

12 + 19 + 31 + 53 + . . .+
(
5(1 + 2k−1) + 2k

)
= k(k + 6) + 5(2k − 1)

Then for n = k + 1

12 + 19 + 31 + 53 + . . .+
(
5(1 + 2k−1) + 2k

)
+
(
5(1 + 2k) + 2(k + 1)

)
= k(k + 6) + 5(2k − 1) + 5(1 + 2k) + 2(k + 1)

= k(k + 6) + 5× 2k − 5 + 5 + 5× 2k + 2k + 2

= k(k + 6) + 5× 2k + 5× 2k + 2k + 2

= k(k + 6) + 5× 2× 2k + 2k + 2

= k(k + 6) + 5× 2k+1 + 2k + 2

= k(k + 6) + 5× 2k+1 − 5 + 5 + 2k + 2

= k(k + 6) + 5(2k+1 − 1) + 2k + 7

= k(k + 6) + 5(2k+1 − 1) + (k + 6) + (k + 1)

= (k + 1)(k + 6) + 5(2k+1 − 1) + (k + 1)

= (k + 1)(k + 7) + 5(2k+1 − 1)

= (k + 1) ((k + 1) + 6) + 5(2k+1 − 1)

Thus if the statement is true for n = k it is also
true for n = k + 1.

Since the statement is true for n = 1 it follows by
induction that it is true for all integer n ≥ 1. �
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CHAPTER 2 Solutions to A.J. Sadler’s

Chapter 2

Exercise 2A

1. One solution is z = 1 = cis 0 and the other five
solutions divide the complex plane into six equal-
sized regions:

z ∈
{

cis 0, cis
π

3
, cis

2π

3
, cisπ, cis−π

3
, cis

2π

3

}
2. One solution is z = 1 = cis 0 and the other

five solutions divide the complex plane into eight
equal-sized regions:

z ∈ {cis 0, cis±45◦, cis±90◦, cis±135◦, cis 180◦}

3. One solution is z = 1 = cis 0 and the other
five solutions divide the complex plane into seven
equal-sized regions:

z ∈
{

cis 0, cis±2π

7
, cis±4π

7
,± cis

6π

7

}
4. Start with the one known root and mark in the

other five, each rotated π
3 from the previous.

-2 -1 1 2

-2

-1

1

2

Re

Im

(
√

3+i)

√
3 + i =

√(√
3
)2

+ 12 cis

(
tan-1 1√

3

)
= 2 cis

π

6

∴ z6 = −64 has roots

z ∈
{

2 cis±π
6
, 2 cis±π

2
, 2 cis±5π

6

}
5. Start with the one known root and mark in the

other four, each rotated 360
5

◦
= 72◦ from the pre-

vious.

-1 1

-1

1

Re

Im

(1−i)

1− i =
√

2 cis−45◦

∴ z ∈
{√

2 cis−45◦,
√

2 cis−117◦,
√

2 cis 27◦,

√
2 cis 99◦,

√
2 cis 171◦

}
6. Start with the one known root and mark in the

other four, each rotated 90◦ from the previous.

-4 -2 2 4

-4

-2

2

4

Re

Im
(3 + 4i)

(−4 + 3i)

(4− 3i)
(−3− 4i)

7. (a) (2 + i)2 = 4 + 4i + i 2

= 3 + 4i

(b) (2 + i)4 =
(
(2 + i)2

)2
= (3 + 4i)2

= 9 + 24i + 16i2

= −7 + 24i

(c) We know that z = 2 + i is a solution from
the preceding work. Start with this solu-
tion and find the other three, each rotated
90◦ from the previous.

-2 -1 1 2

-2

-1

1

2

Re

Im

(2+i)

(d) Solutions are

z ∈ {(2 + i), (−1 + 2i), (1− 2i), (−2− i)}

8. k = (2 cis 20◦)5

= (2 cis 20◦)(2 cis 20◦)(2 cis 20◦)3

= (4 cis 40◦)(2 cis 20◦)2(2 cis 20◦)

= (4 cis 40◦)(4 cis 40◦)(2 cis 20◦)

= (16 cis 80◦)(2 cis 20◦)

= 32 cis(100)◦

6



Unit 3D Specialist Mathematics Exercise 2B

(This is unnecessarily long-winded, but I haven’t
wanted to anticipate the next section. Students
should be able to see how to do this in a single
step.)

Now the other four solutions are simply 72◦ ro-
tations of the first. (The first is also included for
completeness.)

z ∈ {2 cis 20◦, 2 cis 92◦, 2 cis 164◦,

2 cis(−52◦), 2 cis(−124)◦}

9. The four solutions will be separated by 90◦. From
previous work it should be clear how this relates
to the complex numbers in a+ bi form so that no
working is required. (See, for example, question
7.)

Exercise 2B

It is useful for much of the work in this section to be
familiar with Pascal’s triangle and its role in binomial
expansions:

0: 1
1: 1 1
2: 1 2 1
3: 1 3 3 1
4: 1 4 6 4 1
5: 1 5 10 10 5 1
6: 1 6 15 20 15 6 1
etc.

1. To prove:

(cos θ + i sin θ)−1 = cos−θ + i sin−θ

Proof:

L.H.S. = (cos θ + i sin θ)−1

=
1

cos θ + i sin θ

=
cos θ − i sin θ

(cos θ + i sin θ)(cos θ − i sin θ)

=
cos θ − i sin θ

cos2 θ − i2 sin2 θ

=
cos θ − i sin θ

cos2 θ + sin2 θ

= cos θ − i sin θ

= cos−θ + i sin−θ
= R.H.S.

�

2. z4 = cos
4π

6
+ i sin

4π

6

= cos
2π

3
+ i sin

2π

3

3. z5 = 25 cis
5π

6

= 32 cis
5π

6

4. z = 35 cis
5π

3

= 243 cis
(
−π

3

)
= 243

(
cos
(
−π

3

)
+ i sin

(
−π

3

))
(matching the style of our answer to that of the
question.)

5. cos 2θ + i sin 2θ = (cos θ + i sin θ)
2

= cos2 θ + 2i sin θ cos θ + i2 sin2 θ

= cos2 θ − sin2 θ + 2i sin θ cos θ

Now equating real and imaginary parts we obtain

cos 2θ = sin2 θ − cos2 θ

and sin 2θ = 2 sin θ cos θ

6. cos 3θ + i sin 3θ = (cos θ + i sin θ)
3

= cos3 θ + 3i sin θ cos2 θ

+ 3i2 sin2 θ cos θ + i3 sin3 θ

= cos3 θ + 3i sin θ cos2 θ

− 3 sin2 θ cos θ − i sin3 θ

= cos3 θ − 3 sin2 θ cos θ

+ i(3 sin θ cos2 θ − sin3 θ)

Now equating real and imaginary parts we obtain

sin 3θ = 3 sin θ cos2 θ − sin3 θ

and cos 3θ = cos3 θ − 3 sin2 θ

= cos3 θ − 3(1− cos2 θ)

= cos3 θ + 3 cos2 θ − 3

7



Exercise 2B Solutions to A.J. Sadler’s

7. cos 5θ + i sin 5θ

= (cos θ + i sin θ)5

= cos5 θ + 5i cos4 θ sin θ − 10 cos3 θ sin2 θ

− 10i cos2 θ sin3 θ + 5 cos θ sin4 θ + i sin5 θ

= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

+ i(5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ)

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

sin 5θ = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

8. (1 + i)6 =
(√

2 cis
π

4

)6
=
(√

2
)6

cis
6π

4

= 8 cis
3π

2

= 8 cis
−π
2

9. (
√

3 + i)5 =

(√(√
3
)2

+ 12 cis

(
tan-1 1√

3

))5

=
(

2 cis
π

6

)5
= 25 cis

5π

6

= 32 cis
5π

6

10. (−3 + 3
√

3i)4 =
(

3(−1 +
√

3)
)4

= 34(−1 +
√

3)4

= 81

(
2 cis

(
tan-1

√
3

−1

))4

= 81

(
2 cis

2π

3

)4

= 81× 24 cis
8π

3

= 1296 cis
2π

3

11.
(

4− 4
√

3
) 1

3

=

(
√

16 + 48 cis

(
tan-1 −4

√
3

4

)) 1
3

=
(

8 cis
(
−π

3

)) 1
3

= 2 cis
(
−π

9

)
The other two cube roots are rotated by 2π

3 , i.e.
2 cis

(
− 7π

9

)
and 2 cis 5π

9 .

12. z4 = 16i

= 16 cis
π

2

z =
(

16 cis
π

2

) 1
4

= 2 cis
π

8
The other three roots are rotated by π

2 , i.e.
2 cis

(
− 3π

8

)
, 2 cis

(
− 7π

8

)
and 2 cis 5π

8 .

13.

√(
8
√

2
)2

+
(

8
√

2
)2

= 16

z4 = 16 cis
3π

4

z = 2 cis
3π

16

The other three roots are rotated by π
2 , i.e.

2 cis
(
− 5π

16

)
, 2 cis

(
− 13π

16

)
and 2 cis 11π

16 .

14. z4 + 4 = 0

z4 = −4

= 4 cisπ

z =
√

2 cis
π

4

The other three roots are rotated by π
2 , i.e.√

2 cis
(
−π4
)
,
√

2 cis
(
− 3π

4

)
and
√

2 cis 3π
4 .

15. |z1| =
1

2

√(√
2
)2

+
(√

6
)2

=
1

2

√
8

=
√

2

arg(z1) = tan-1

√
6√
2

= tan-1
√

3

=
π

3

∴ z1 =
√

2 cis
π

3

|z2| =
1

2

√(√
6
)2

+
(√

2
)2

=
√

2

arg(z2) = tan-1

√
2√
6

= tan-1 1√
3

=
π

6

∴ z2 =
√

2 cis
π

6

z61 =
(√

2
)6

cis
6π

3
= 8 cis 0

z32 =
(√

2
)3

cis
3π

6

= 2
√

2 cis
π

2

z43 = 24 cis
4π

8

= 16 cis
π

2

z61z
3
2

z43
=

(8 cis 0)
(
2
√

2 cis π2
)

16 cis π2

=
16
√

2 cis π2
16 cis π2

=
√

2

8



Unit 3D Specialist Mathematics Exercise 2C

Exercise 2C

1–6 No working required.

7. 3e
4πi
3 = 3 cis

4π

3

= 3 cis

(
−2π

3

)

8. 2e2+
πi
3 = 2

(
e2
) (

e
πi
3

)
= 2e2 cis

π

3

9. 9
√

2e
−πi
4 = 9

√
2 cis

−π
4

= 9
√

2

(
cos
−π
4

+ i sin
−π
4

)
= 9
√

2
(

cos
π

4
i sin

π

4

)
= 9
√

2

(
1√
2
− 1√

2
i

)
= 9− 9i

10. 2e
−5πi

6 = 2 cis
−5π

6

= 2

(
cos
−5π

6
+ i sin

−5π

6

)
= 2

(
− cos

π

6
− i sin

π

6

)
= 2

(
−
√

3

2
− 1

2
i

)
= −
√

3− i

11. 10e
2πi
3 = 10 cis

2π

3

= 10

(
cos

2π

3
+ i sin

2π

3

)
= 10

(
− cos

π

3
+ i sin

π

3

)
= 10

(
−1

2
+

√
3

2
i

)
= (−5 + 5

√
3i)

12. 10e
3πi
4 = 10 cis

3π

4

= 10

(
cos

3π

4
+ i sin

3π

4

)
= 10

(
− cos

π

4
+ i sin

π

4

)
= 10

(
−
√

2

2
+

√
2

2
i

)
= −5

√
2 + 5

√
2i

13. |6
√

3 + 6i| =
√

62 × 3 + 62

= 12

arg(6
√

3 + 6i) = tan-1 6

6
√

3

=
π

6

6
√

3 + 6i = 12e
iπ
6

14. |−1−
√

3i| =
√

1 + 3

= 2

arg(−1−
√

3i) = tan-1−
√

3−1

= −2π

3
(3rd quadrant)

−1−
√

3i = 2e−
2iπ
3

15. 3i = 3 cis
π

2

= 3e
iπ
2

16. −2 = 2(−1)

= 2eiπ

17. r =
√

52 + 122

= 13

θ = tan-1 12

5
= 1.18 (2d.p.)

5 + 12i = 13e1.18i

18. r =
√

22 + 72

=
√

53

θ = tan-1 −7

2
= −1.29 (2d.p.)

2− 7i =
√

53e−1.29i

19. To find a complex conjugate, keep the modulus
unchanged, and take the opposite of the argu-
ment. Thus if z = reiθ then z̄ = re−iθ.

20. (a) z̄ = 4e
−πi
3

= 4 cos
π

3
− 4i sin

π

3

= 2− 2
√

3i

(b) z2 =
(

4e
πi
3

)2
= 16e

2πi
3

= −16 cos
π

3
+ 16i sin

π

3

= −8 + 8
√

3i

9



Exercise 2C Solutions to A.J. Sadler’s

(c)
1

z
=
(

4e
πi
3

)−1
=

1

4
e

−πi
3

=
1

4
cos

π

3
− 1

4
i sin

π

3

=
1

8
−
√

3

8
i

21. (a) LHS =
1

cisnθ

= (cisnθ)
−1

= cis(−nθ)
= RHS

�

(b) LHS =
1

cisnθ

=
1

enθi

= e−nθi

= cis(−nθ)
= RHS

�

(c) LHS =
1

cisnθ

=
1

cosnθ + i sinnθ

=
cosnθ − i sinnθ

(cosnθ + i sinnθ)(cosnθ − i sinnθ)

=
cosnθ − i sinnθ

cos2 nθ − i2 sin2 nθ

=
cosnθ − i sinnθ

cos2 nθ + sin2 nθ

= cosnθ − i sinnθ

= cos(−nθ) + i sin(−nθ)
= cis(−nθ)
= RHS

�

22. (a) First cosine:

RHS =
eiθ + e−iθ

2

=
cos θ + i sin θ + cos−θ + i sin−θ

2

=
cos θ + i sin θ + cos θ − i sin θ

2

=
2 cos θ

2
= cos θ

= LHS

�

then sine:

RHS =
eiθ − e−iθ

2i

=
cos θ + i sin θ − cos−θ − i sin−θ

2i

=
cos θ + i sin θ − cos θ + i sin θ

2i

=
2i sin θ

2i
= sin θ

= LHS

�

23. (a) No working required: simple application of
the chain rule.

(b) No working required: simple application of
the chain rule.

(c)
d

dθ

(
eiθe2

)
=

d

dθ

(
eiθ+2

)
= ie2+iθ

Alternatively, bearing in mind that e2 is a
constant, we can do

d

dθ

(
eiθe2

)
= ie2eiθ

in a single step.

24. (a)

∫
e2ix dx =

e2ix

2i
+ c

=
ie2ix

−2
+ c

= −1

2
ie2ix + c

(b)

∫
e3ix dx =

e3ix

3i
+ c

=
ie3ix

−3
+ c

= −1

3
ie3ix + c

(c)

∫
e3+ix dx =

e3+ix

i
+ c

=
ie3+ix

−1
+ c

= −ie3+ix + c

10



Unit 3D Specialist Mathematics Miscellaneous Exercise 2

25.

∫
ex cosxdx+ i

∫
ex sinxdx

=

∫
ex(cosx+ i sinx) dx

=

∫
exeix dx

=

∫
e(1+i)x dx

=
e(1+i)x

1 + i
+ c

=
(1− i)e(1+i)x

(1− i)(1 + i)
+ c

=
(1− i)ex+ix

1− i2
+ c

=
(1− i)exeix

2
+ c

=
ex

2
(1− i) cisx+ c

=
ex

2
(1− i)(cosx+ i sinx) + c

=
ex

2
((cosx+ i sinx)− i(cosx+ i sinx)) + c

=
ex

2

(
cosx+ i sinx− i cosx− i2 sinx)

)
+ c

=
ex

2
(cosx+ i sinx− i cosx+ sinx)) + c

=
ex(sinx+ cosx)

2
+ i

ex(sinx− cosx)

2
+ c

Equating real and imaginary parts (and bearing
in mind that the constant of integration can also
have real and imaginary parts) gives∫

ex cosx dx =
ex(sinx+ cosx)

2
+ c

and

∫
ex sinx dx =

ex(sinx− cosx)

2
+ c

Miscellaneous Exercise 2

1. cos θ + i sin θ = eiθ

∴ cosnθ + i sinnθ = einθ

=
(
eiθ
)n

= (cos θ + i sin θ)
n

2. cos θ + i sin θ = eiθ

∴ cos(−nθ) + i sin(−nθ) = e−inθ

=
(
eiθ
)−n

= (cos θ + i sin θ)
−n

3. (a) z + z̄ = a+ bi + a− bi
= 2a

(b) z + z̄ = a+ bi− (a− bi)
= 2bi

(c) zz̄ = (a+ bi)(a− bi)
= a2 − b2i2

= a2 + b2

(d)
z

z̄
=
z2

zz̄

=
(a+ bi)2

a2 + b2

=
a2 + 2abi + b2i2

a2 + b2

=
a2 − b2 + 2abii2

a2 + b2

4.
z

z̄
=

reiθ

re−iθ

=
eiθ

e−iθ

= eiθ+iθ

= e2iθ

5. Most of these require no working. About half of
them need the chain rule, but in such a straight-
forward way that you should be able to differen-
tiate them in a single line.
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Miscellaneous Exercise 2 Solutions to A.J. Sadler’s

(i)
d

dx

x+ 1

x− 1
=

(x− 1)− (x+ 1)

(x− 1)2

= − 2

(x− 1)2

6. (a) 3y + 3x
dy

dx
+ 2y

dy

dx
= 7

dy

dx
(3x+ 2y) = 7− 3y

dy

dx
=

7− 3y

3x+ 2y

(b) 2xy + x2
dy

dx
+ 3x2 = y + x

dy

dx

x2
dy

dx
− xdy

dx
= y − 2xy − 3x2

dy

dx
(x2 − x) = y − 2xy − 3x2

dy

dx
=
y − 2xy − 3x2

x(x− 1)

(c)
dy

dx
=

dy

dt

dt

dx

=
1

2

(d)
dy

dx
=

dy

dt

dt

dx

=
3t2

6t− 2

7. Let P (n) be the proposition that 5n + 7× 13n is
a multiple of 8. The initial case, where n = 1:

51 + 7× 131 = 5 + 7× 13

= 96

= 8(12)

The statement is true for the initial case: we have
established P (1).

Assume P (k), that is, that the statement is true
for n = k, so.

5k + 7× 13k = 8a

for some integer a.

Then for n = k + 1

5k+1+7× 13k+1

= 5× 5k + 13× 7× 13k

= 5× 5k + (5 + 8)× 7× 13k

= 5× 5k + 5× 7× 13k + 8× 7× 13k

= 5(5k + 7× 13k) + 8× 7× 13k

= 5(8a) + 8× 7× 13k

= 8(5a+ 7× 13k)

which is a multiple of 8.

Thus P (k) =⇒ P (k + 1) (i.e. if the statement
is true for n = k it is also true for n = k + 1).

Hence since the statement is true for n = 1 it
follows by mathematical induction that it is true
for all integer n ≥ 1. �

8. u = 2x+ 3 x =
u− 3

2

du = 2 dx dx =
du

2

∫
5x√

2x+ 3
dx =

∫
5(u− 3)

2
√
u

du

2

=
5

4

∫
u− 3√
u

du

=
5

4

∫ (√
u− 3√

u

)
du

=
5

4

(
2

3
u

3
2 − 3

(
2u

1
2

))
+ c

=
5

4

(
2

3
u

3
2 − 3

(
2u

1
2

))
+ c

=
5

6

(
u

3
2 − 9

√
u
)

+ c

=
5

6

√
u(u− 9) + c

=
5

6

√
2x+ 3(2x+ 3− 9) + c

=
5

6

√
2x+ 3(2x− 6) + c

=
5

3

√
2x+ 3(x− 3) + c

9. 3|z − 5| = 2|z + 5i|
3|x+ iy − 5| = 2|x+ iy + 5i|
3|x− 5 + iy| = 2|x+ (y + 5)i|

32|x− 5 + iy|2 = 22|x+ (y + 5)i|2

9
(
(x− 5)2 + y2

)
= 4

(
x2 + (y + 5)2

)
9
(
x2 − 10x+ 25 + y2

)
= 4

(
x2 + y2 + 10y + 25

)
9x2 − 90x+ 225 + 9y2 = 4x2 + 4y2 + 40y + 100

5x2 − 90x+ 5y2 − 40y = −125

x2 − 18x+ y2 − 8y = −25

(x− 9)2 − 81 + (y − 4)2 − 16 = −25

(x− 9)2 + (y − 4)2 = 72

�
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Unit 3D Specialist Mathematics CHAPTER 3

Chapter 3

Exercise 3A

1. No working needed.

2. No working needed.

3. (a) A + B cannot be determined because the
matrices are not the same size.

(b) A + C =

[
1 + 2 2− 3
0 + 1 −4− 5

]
=

[
3 −1
1 −9

]
(c) C−A =

[
2− 1 −3− 2
1− 0 −5 + 4

]
=

[
1 −5
1 −1

]

(d) 2D =

 2× 3
2× 1

2×−2

 =

 6
2
−4


(e) 3B =

 3× 3 3×−1
3× 2 3× 4
3× 0 3× 3

 =

 9 −3
6 12
0 9


(f) B + D cannot be determined because the

matrices are not the same size.

(g) 2A =

[
2× 1 2× 2
2× 0 2×−4

]
=

[
2 4
0 −8

]
(h) 2A− C =

[
2− 2 4 + 3
0− 1 −8 + 5

]
=

[
0 7
−1 −3

]

4. (a) P + Q =

[
3 + 2 2 + 1 −1 + 0
1 + 0 4− 1 3 + 0

]
=

[
5 3 −1
1 3 3

]
(b) Q− P =

[
2− 3 1− 2 0 + 1
0− 1 −1− 4 0− 3

]
=

[
−1 −1 1
−1 −5 −3

]

(c) 3R =

 3× 1 3× 2 3× 1
3× 2
3× 1 3× 2


=

[
3 6 3
6 3 6

]
(d) 3P− 2Q

=

[
3× 3− 2× 2 3× 2− 2× 1 3×−1− 2× 0
3× 1− 2× 0 3× 4− 2×−1 3× 3− 2× 0

]
=

[
5 4 −3
3 14 9

]
5. (a) A + B cannot be determined because the

matrices are not the same size.

(b) 3A =

[
3× 2 3× 4
3× 1 3× 3

]
=

[
6 12
3 9

]
(c) B+2C

=
[

2 + 2× 3 1 + 2× 1 3 + 2× 4
]

=
[

8 3 11
]

(d) C + D cannot be determined because the
matrices are not the same size.

6. (a) A + B cannot be determined because the
matrices are not the same size.

(b) A+C

=

 1 + 5 3 + 1 0 + 3 1− 1
0 + 2 1 + 1 2 + 4 3 + 3
0 + 1 0 + 5 1 + 2 4 + 0


=

 6 4 3 0
2 2 6 6
1 5 3 4



(c) 2B =


2× 3 2× 1 2× 4
2× 2 2× 1 2×−3
2× 0 2× 1 2× 2
2× 1 2× 0 2× 0



=


6 2 8
4 2 −6
0 2 4
2 0 0


(d) 5A− C

=

 5× 1− 5 5× 3− 1 5× 0− 3 5× 1 + 1
5× 0− 2 5× 1− 1 5× 2− 4 5× 3− 3
5× 0− 1 5× 0− 5 5× 1− 2 5× 4− 0


=

 0 14 −3 6
−2 4 6 12
−1 −5 3 20



7. No working required. ‘Yes’ or ‘No’ for additions
or subtractions is determined by whether the ma-
trices specified are the same size. Multiplication
by a scalar can always be determined.

8. No working required.

9. No working required.

10. 3A− 2C = B

2C = 3A− B

C =
1

2
(3A− B)

=
1

2

[
2 4 −6
2 0 −4

]
=

[
1 2 −3
1 0 −2

]

11. (a) Add the four individual game matrices.

(b) Multiply the result from (a) by 1
4 .

12. Let the two matrices provided by A and B. The

13



Exercise 3B Solutions to A.J. Sadler’s

required forecast is given by

1.1(A + B)

= 1.1


5600 1750 2320 1770 4250
2840 1270 1370 1020 2720
5050 1470 2820 1280 2700
2190 940 1520 840 1780



=


6160 1925 2552 1947 4675
3124 1397 1507 1122 2992
5555 1617 3102 1408 2970
2409 1034 1672 924 1958



13. No working needed. (Just substitute row and
column into the expression to find the value for
each element.)

14. No working needed. (Just substitute row and
column into the expression to find the value for
each element.)

Exercise 3B

1.
[

1 2
] [ 2 3

1 3

]
=
[

1× 2 + 2× 1 1× 3 + 2× 3
]

=
[

4 9
]

2. Not possible: the number of columns in the first
matrix (2) does not equal the number of rows in
the second (1).

3.

[
2 −1
1 0

] [
1 4
0 −2

]
=

[
2× 1− 1× 0 2× 4− 1×−2
1× 1 + 0× 0 1× 4 + 0×−2

]
=

[
2 10
1 4

]

4.
[

3 1
] [ 1

4

]
=
[

3× 1 + 1× 4
]

=
[

7
]

5.

[
1
4

] [
3 1

]
=

[
1× 3 1× 1
4× 3 4× 1

]
=

[
3 1

12 4

]

6.

[
2 −3
−1 4

] [
2 1
−3 2

]
=

[
2× 2− 3×−3 2× 1− 3× 2
−1× 2 + 4×−3 −1× 1 + 4× 2

]
=

[
13 −4
−14 7

]

7.

[
1 0
0 1

] [
2 3
1 −1

]
=

[
1× 2 + 0× 1 1× 3 + 0×−1
0× 2 + 1× 1 0× 3 + 1×−1

]
=

[
2 3
1 −1

]

8.

[
1 4
−1 3

] [
1 0
0 1

]
=

[
1× 1 + 4× 0 1× 0 + 4× 1
−1× 1 + 4× 0 −1× 0 + 3× 1

]
=

[
1 4
−1 3

]

9.

[
0 0
0 0

] [
2 1
4 5

]
=

[
0× 2 + 0× 4 0× 1 + 0× 5
0× 2 + 0× 4 0× 1 + 0× 5

]
=

[
0 0
0 0

]

10.

[
3 1
5 2

] [
2 −1
−5 3

]
=

[
3× 2 + 1×−5 3×−1 + 1× 3
5× 2 + 2×−5 5×−1 + 2× 3

]
=

[
1 0
0 1

]

11.

[
8 −5
−3 2

] [
2 5
3 8

]
=

[
8× 2− 5× 3 8× 5− 5× 8
−3× 2 + 2× 3 −3× 5 + 2× 8

]
=

[
1 0
0 1

]

12.

[
3 1
1 1

] [
0.5 −0.5
−0.5 1.5

]
=

[
3× 0.5 + 1×−0.5 3×−0.5 + 1× 1.5
1× 0.5 + 1×−0.5 1×−0.5 + 1× 1.5

]
=

[
1 0
0 1

]
14



Unit 3D Specialist Mathematics Exercise 3B

13.
[

1 2 1 2
] 

2
1
2
1


=
[

1× 2 + 2× 1 + 1× 2 + 2× 1
]

=
[

8
]

14.

[
1 0 1 0
0 1 0 1

]
1 0 1
3 −1 0
2 2 2
1 4 1


=

[
1 + 2 0 + 2 1 + 2
3 + 1 −1 + 4 0 + 1

]
=

[
3 2 3
4 3 1

]

15.

 1 0
0 2
1 1

[ 1 0 5
5 1 −1

]

=

 1 + 0 0 + 0 5 + 0
0 + 10 0 + 2 0− 2
1 + 5 0 + 1 5− 1


=

 1 0 5
10 2 −2
6 1 4


16.

[
1 3 1
3 0 −2

] 1 2
4 1
−3 −2


=

[
1 + 12− 3 2 + 3− 2
3 + 0 + 6 6 + 0 + 4

]
=

[
10 3
9 10

]

17.

[
1 2 3
4 5 6

] 1
2
3

 =

[
1 + 4 + 9

4 + 10 + 18

]

=

[
14
32

]

18.

 2 1 0
−1 3 2

0 2 4

 1 1 −1
0 2 3
3 1 4


=

 2 + 0 + 0 2 + 2 + 0 −2 + 3 + 0
−1 + 0 + 6 −1 + 6 + 2 1 + 9 + 8
0 + 0 + 12 0 + 4 + 4 0 + 6 + 16


=

 2 4 1
5 7 18

12 8 22


19. (a) AB =

 1 0 −1
2 0 1
0 1 1

 0 1 2
2 1 0
0 −1 1


=

 0 + 0 + 0 1 + 0 + 1 2 + 0− 1
0 + 0 + 0 2 + 0− 1 4 + 0 + 1
0 + 2 + 0 0 + 1− 1 0 + 0 + 1


=

 0 2 1
0 1 5
2 0 1



(b) BA =

 0 1 2
2 1 0
0 −1 1

 1 0 −1
2 0 1
0 1 1


=

 0 + 2 + 0 0 + 0 + 2 0 + 1 + 2
2 + 2 + 0 0 + 0 + 0 −2 + 1 + 0
0− 2 + 0 0 + 0 + 1 0− 1 + 1


=

 2 2 3
4 0 −1
−2 1 0



(c) A2 =

 1 0 −1
2 0 1
0 1 1

 1 0 −1
2 0 1
0 1 1


=

 1 + 0 + 0 0 + 0− 1 −1 + 0− 1
2 + 0 + 0 0 + 0 + 1 −2 + 0 + 1
0 + 2 + 0 0 + 0 + 1 0 + 1 + 1


=

 1 −1 −2
2 1 −1
2 1 2



(d) B2 =

 0 1 2
2 1 0
0 −1 1

 0 1 2
2 1 0
0 −1 1


=

 0 + 2 + 0 0 + 1− 2 0 + 0 + 2
0 + 2 + 0 2 + 1 + 0 4 + 0 + 0
0− 2 + 0 0− 1− 1 0 + 0 + 1


=

 2 −1 2
2 3 4
−2 −2 1


20. It’s probably simplest to refer to 19(a) and 19(b)

above.

21. (a) (AB)C =

[
3 −1
−3 −1

] [
1 2
−1 1

]
=

[
4 5
−2 −7

]
A(BC) =

[
1 2
−1 0

] [
2 7
1 −1

]
=

[
4 5
−2 −7

]

(b) (AB)C =
[

5 2 1
]  1 0
−1 2

1 1


=
[

4 5
]

A(BC) =
[

1 2
] [ 0 −1

2 3

]
=
[

4 5
]

22. (a) A(B + C) =

[
2 1
4 0

] [
1 2
−1 4

]
=

[
1 8
4 8

]
AB + AC =

[
−2 3
−4 4

]
+

[
3 5
8 4

]
=

[
1 8
4 8

]
15



Exercise 3B Solutions to A.J. Sadler’s

(b) A(B + C) =

[
2 0
−3 1

] [
2
6

]
=

[
4
0

]
AB + AC =

[
6
−7

]
+

[
−2

7

]
=

[
4
0

]
23. (kA)B =

[
ka kb
kc kd

] [
e f
g h

]
=

[
kae+ kbg kag + kah
kce+ kdg kcg + kdh

]
A(kB) =

[
a b
c d

] [
ke kf
kg kh

]
=

[
kae+ kbg kag + kah
kce+ kdg kcg + kdh

]
k(AB) = k

[
ae+ bg ag + ah
ce+ dg cg + dh

]
=

[
kae+ kbg kag + kah
kce+ kdg kcg + kdh

]
∴ (kA)B = A(kB) = k(AB)

�

24. No working required.

25. No working required. (Write down the dimen-
sions of each matrix, then this question becomes
a repeat of the previous one.)

26. No working required.

27. Consider each possible permutation of two ma-
trices:

A B C
A AA AB AC
B BA BB BC
C CA CB CC

then simply decide which products have dimen-
sions that allow multiplication:

A B C
A (2× 2)(2× 2) (2× 2)(1× 2) (2× 2)(2× 1)
B (1× 2)(2× 2) (1× 2)(1× 2) (1× 2)(2× 1)
C (2× 1)(2× 2) (2× 1)(1× 2) (2× 1)(2× 1)

Note: BC is a valid product even though not
listed in Mr Sadler’s solution. (It results in a
1× 1 matrix.)

28. (a)

[
1 −1
2 0

] [
2 0
3 2

]
=

[
−1 −2

4 0

]
(b)

[
2 0
3 2

] [
1 −1
2 0

]
=

[
2 −2
7 −3

]

29. (a)


1 1 1
3 1 0
0 3 3
1 2 0
2 0 3


 5

3
1

 =


9

18
12
11
13



(b)


1 1 1
3 1 0
0 3 3
1 2 0
2 0 3


 4

3
2

 =


9

15
15
10
14


30. Initially: 1 000 5 000 400 270

500 8 000 500 250
500 3 000 500 500




5
0.5
12
10

 =

 15 000
15 000
15 000


All client portfolios are initially worth $15 000.

Two years later: 1 000 5 000 400 270
500 8 000 500 250
500 3 000 500 500




4
0.6
20
10

 =

 17 700
19 300
18 800


The portfolios of Client 1, Client 2 and Client 3
are worth $17 700, $19 300 and $18 800 respec-
tively.

31.
[

15 10
] [ 375 1

1250 4

]
=
[

18 125 55
]

The order requires 18 125mL of drink and 55
burgers.

32. (a) P is 3 × 3 and Q is 1 × 3 so QP is possible
and PQ is not.

(b) QP =
[

75 125 180
]  15 5 5

25 25 14
2 1 3


=
[

4 610 3 680 2 665
]

The product shows the income per night for
each hotel when all rooms are in use.

(c) Refer to the answer in Sadler.

33. No working required.

34. No working required.

35. Remember that the multiplication must make
sense. We need to multiply the times for
model A (i.e. the first row of P) with the
number of orders for A; it makes no sense
to multiply any of the times for A with the
number of orders for B. PQ has as its first
element (cutting A)×(orders A)+(assembling
A)×(orders B)+(packing A)×(orders C) and
thus makes no sense. In contrast, RP has as
its first element (orders A)×(cutting A)+(orders
B)×(cutting B)+(orders C)×(cutting C): the
models are not mixed and the product makes
sense. This should also make it clear what this
first element is: the total cutting time. The
meaning of the remainder of the RP should be
obvious.
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Unit 3D Specialist Mathematics Exercise 3C

Exercise 3C

1–8 No working required.

9.
1

2× 1− 1× 1

[
1 −1
−1 2

]
=

[
1 −1
−1 2

]
10.

1

3× 3− 2× 4

[
3 −2
−4 3

]
=

[
3 −2
−4 3

]
11.

1

2× 1− 1×−1

[
1 −1
1 2

]
=

1

3

[
1 −1
1 2

]
12.

1

4× 2− 3× 1

[
2 −3
−1 4

]
=

1

5

[
2 −3
−1 4

]
13.

1

3× 3 + 1× 1

[
3 1
−1 3

]
=

1

10

[
3 1
−1 3

]
14.

1

9 + 1

[
−3 −1

1 −3

]
=

1

10

[
−3 −1

1 −3

]
15. Matrix is singular and so has no inverse.

16. Matrix is singular and so has no inverse.

17. Matrix is singular and so has no inverse.

18.
1

x× 1− y × 0

[
1 −y
0 x

]
=

1

x

[
1 −y
0 x

]
19.

1

1− 0

[
−1 0

0 −1

]
=

[
−1 0

0 −1

]
20.

1

−1− 0

[
−1 0

0 1

]
= −1

[
−1 0

0 1

]
=

[
1 0
0 −1

]
21. No working required.

22.

[
5 3
3 2

]
A =

[
2 11
1 6

]
[

2 −3
−3 5

] [
5 3
3 2

]
A =

[
2 −3
−3 5

] [
2 11
1 6

]
A =

[
1 4
−1 −3

]
23. B

[
5 1
3 1

]
& =

[
7 1

15 3

]
B

[
5 1
3 1

] [
1 −1
−3 5

]
=

[
7 1

15 3

] [
1 −1
−3 5

]
B =

[
2 −1
3 0

]
24.

[
1 2
0 −1

]
C =

[
−1 4 −2

1 −1 1

]
−1

[
−1 −2

0 1

] [
1 2
0 −1

]
C = −1

[
−1 −2

0 1

] [
−1 4 −2

1 −1 1

]
C = −1

[
−1 −2 0

1 −1 1

]
=

[
1 2 0
−1 1 −1

]

25. D

[
4 −3
2 1

]
& =

[
−2 −6

]
D

[
4 −3
2 1

]
1

10

[
1 3
−2 4

]
=
[
−2 −6

] 1

10

[
1 3
−2 4

]
D =

1

10

[
10 −30

]
=
[

1 −3
]

26. A2 − 2A =

[
13 8
2 5

]
−
[

6 8
2 −2

]
=

[
7 0
0 7

]
= 7I

∴ k = 7

27. A−1 =
1

0k + 10

[
0 2
−5 k

]
∴ 10A−1 =

[
0 2
−5 k

]
A + 10A−1 =

[
k −2
5 0

]
+

[
0 2
−5 k

]
=

[
k 0
0 k

]
= kI

∴ k = 5

28. (a) No working required.

(b) 16× 5 + 5×−14 = 10

(c) A−1 =
1

3− 2

[
1 1
2 3

]
=

[
1 1
2 3

]
(d) No working required (since we’ve already

calculated the determinant of B).

(e) AC = B

A−1AC = A−1B

C = A−1B

=

[
1 1
2 3

] [
16 −5
−14 5

]
=

[
2 0

−10 5

]
(f) DA = B

DAA−1 = BA−1

D = BA−1

=

[
16 −5
−14 5

] [
1 1
2 3

]
=

[
6 1
−4 1

]
29. (a) No working required.

(b) P−1 =
1

−4 + 3

[
1 −1
−3 −4

]
=

[
−1 1

3 4

]
(c) Q−1 =

1

6− 0

[
1 −2
0 6

]
=

1

6

[
1 −2
0 6

]
17



Exercise 3C Solutions to A.J. Sadler’s

(d) (P + Q)−1 =
1

4− 3

[
2 −1
−3 2

]
=

[
2 −1
−3 2

]
(e) R(P + Q) = Q

R(P + Q)(P + Q)−1 = Q(P + Q)−1

R = Q(P + Q)−1

=

[
6 2
0 1

] [
2 −1
−3 2

]
=

[
6 −2
−3 2

]
30. A = (AB)B−1

=

[
2 −1

17 −9

]
31. D = C−1(CD)

=

[
1 −1
−2 1

]
32. (a) 3x− 24 = 0

x = 8

(b) x2 − 16 = 0

x = ±4

(c) x2 − x− 20 = 0

(x− 5)(x+ 4) = 0

x = 5

or x = −4

33. F = E−1(EF)

=
1

2

[
2 6
4 −6

]
=

[
1 3
2 −3

]
G = (GE)E−1

=
1

2

[
6 −8
0 4

]
=

[
3 −4
0 2

]
34. AC = B

C = A−1B

35. CA = B

C = BA−1

36. (a) No working required.

(b) CA = B

C = BA−1

=

[
24 56
16 36

]
1

30× 36− 70× 16

[
36 −70
−16 30

]
= − 1

40

[
24 56
16 36

] [
36 −70
−16 30

]
= − 1

40

[
−32 0

0 −40

]
=

[
0.8 0

0 1

]

37. C = A− CB

C + CB = A

CI + CB = A

C(I + B) = A

C(I + B)(I + B)−1 = A(I + B)−1

C = A(I + B)−1

�

C = A(I + B)−1

=

[
−1 6
11 4

]([
1 0
0 1

]
+

[
1 2
−5 1

])−1
=

[
−1 6
11 4

] [
2 2
−5 2

]−1
=

[
−1 6
11 4

]
1

14

[
2 −2
5 2

]
=

1

14

[
28 14
42 −14

]
=

[
2 1
3 −1

]

38. A = BC−AC

= (B−A)C

(B−A)−1A = (B−A)−1(B−A)C

C = (B−A)−1A

B−A =

[
−1 0

2 4

]
−
[
−3 5

1 6

]
=

[
2 −5
1 −2

]
(B−A)−1 =

[
−2 5
−1 2

]
C =

[
−2 5
−1 2

] [
−3 5

1 6

]
=

[
11 20
5 7

]
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39. P− PQ− PQ2 = Q

P(I−Q−Q2) = Q

P = Q(I−Q−Q2)−1

Q2 =

[
1 0

−15 4

]
I−Q−Q2 =

[
1 0
0 1

]
−
[
−1 0

5 −2

]
−
[

1 0
−15 4

]
=

[
1 0

10 −1

]
(I−Q−Q2)−1 = −1

[
−1 0
−10 1

]
=

[
1 0

10 −1

]
P =

[
−1 0

5 −2

] [
1 0

10 −1

]
=

[
−1 0
−15 2

]

40. (a) No working required.

(b) No working required.

(c) BA =
[

860 740
]

BAA−1 =
[

860 740
]

A−1

B =
[

860 740
] [ 6 5

8 7

]−1
=
[

860 740
] 1

2

[
7 −5
−8 6

]
=

1

2

[
50 70

]
[
x y

]
=

1

2

[
50 70

]
x = 50

y = 70

Exercise 3D

1–6 No working required.

7. (a) No working required. (By this stage you
should be able to find the inverse of a 2× 2
matrix in a single step.)

(b)

[
3 −2
−5 4

] [
x
y

]
=

[
4
−9

]
[
x
y

]
=

1

2

[
4 2
5 3

] [
4
−9

]
=

[
−1
− 7

2

]
x = −1

y = −7

2

8. (a) No working required.

(b)

 −2 1 −2
2 −1 3
0 1 2

 x
y
z

 =

 3
−1

9


 x
y
z

 =
1

2

 −5 −4 1
−4 −4 2

2 2 0

 3
−1

9


=

 −1
5
2


x = −1

y = 5

z = 2

9. (a)

[
3 1
5 2

] [
x
y

]
=

[
2
1

]
[
x
y

]
=

[
2 −1
−5 3

] [
2
1

]
=

[
3
−7

]
x = 3

y = −7

(b)

[
3 1
7 3

] [
x
y

]
=

[
8

13

]
[
x
y

]
=

1

2

[
3 −1
−7 3

] [
8

13

]
=

1

2

[
11
−17

]
x = 5.5

y = −8.5

10. (a) AB =

 8− 11 + 10 −4 + 2 + 2 2− 8 + 6
−4− 11 + 15 2 + 2 + 3 −1− 8 + 9
−12 + 22− 10 6− 4− 2 −3 + 16− 6


=

 7 0 0
0 7 0
0 0 7


= 7I

(b) 7I = AB

I =
1

7
AB

A−1I = A−1
1

7
AB

A−1 =
1

7
B
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(c) A

 x
y
z

 =

 −3
7
5


 x
y
z

 = A−1

 −3
7
5


=

1

7
B

 −3
7
5


=

1

7

 12 + 14− 5
−33− 14 + 40
−15 + 7 + 15


=

1

7

 21
−7
7


=

 3
−1
1


x = 3

y = −1

z = 1

11. No working required for (a) and (b) is purely cal-
culator work to determine X = A−1B, then in-
terpret the result.

Miscellaneous Exercise 3

1. No working required.

2. (a) 2z = 2× 3 cis 5π
6 = 6 cis 5π

6

(b) 3w = 3× 2 cis
(
− 2π

3

)
= 6 cis

(
− 2π

3

)
(c) zw = 3× 2 cis

(
5π
6 −

2π
3

)
= 6 cis π6

(d)
z

w
=

3

2
cis

(
5π

6
+

2π

3

)
= 1.5 cis

9π

6

= 1.5 cis

(
3π

2
− 2π

)
= 1.5 cis

(
−π

2

)
(e) iz = 3 cis

(
5π

6
+
π

2

)
= 3 cis

8π

6

= 3 cis

(
4π

3
− 2π

)
= 3 cis

(
−2π

3

)
(f) −w = 2 cis

(
− 2π

3 + π
)

= 2 cis π3

(g) No working required.

(h) No working required (using the answer to
(c) as the starting point).

(i) No working required (because z̄w̄ = zw).

(j) z2w3 = 32 cis

(
5π

6
× 2

)
× 23 cis

(
−2π

3
× 3

)
= 9× 8 cis

(
5π

3
− 2π

)
= 72 cis

(
−π

3

)
It is useful to remember that

• i = cis π2

• −1 = cisπ = cis(−π)

• −i = cis
(
−π2
)

3. (a)

[
2
3

] [
1 −2

]
=

[
2 −4
3 −6

]

(b)
[

1 −2
] [ 2

3

]
=
[
−4

]
4. Write the dimensions for each matrix and rear-

range so that adjacent numbers match:
B A C

1× 2 2× 3 3× 4
Before doing any calculations, it should be clear
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that this will result in a 1× 4 matrix.

BA =
[

1 −1
] [ 2 1 3

0 −1 2

]
=
[

2 2 1
]

BAC =
[

2 2 1
]  1 1 0 −1

0 1 −1 3
3 1 4 0


=
[

5 5 2 4
]

5. A =

∫ 6

3

x2 − 2x+ 3 dx

=

[
x3

3
− x2 + 3x

]6
3

= (72− 36 + 18)− (9− 9 + 9)

= 54− 9

= 45 units2

6. (a) LHS = ei(α+β)

= eiα+iβ

= eiαeiβ

= cisα cisβ

= RHS
�

(b) LHS = cos(α+ β) + i sin(α+ β)

= cosα cosβ − sinα sinβ

+ i(sinα cosβ + cosα sinβ)

= cosα cosβ − sinα sinβ

+ i sinα cosβ + i cosα sinβ

= cosα cosβ + i cosα sinβ

− sinα sinβ + i sinα cosβ

= cosα(cosβ + i sinβ)

+ i2 sinα sinβ + i sinα cosβ

= cosα(cosβ + i sinβ)

+ i sinα(i sinβ + cosβ)

= (cosα+ i sinα)(cosβ + i sinβ)

= cisα cisβ

= RHS
�

7. No working required.
(For (c), think 4eiπx = 4 cis(πx) so the set de-
scribed is the points z = r cis θ having modulus
r = 4 and argument 0 < θ ≤ π

2 .)

8. A =

∫ 2π
3

π
3

2 sin2 xdx

=

∫ 2π
3

π
3

−(1− 2 sin2 x) + 1 dx

=

∫ 2π
3

π
3

− cos 2x+ 1 dx

=

[
− sin 2x

2
+ x

] 2π
3

π
3

=

(
−

sin 4π
3

2
+

2π

3

)
−
(
−

sin 2π
3

2
+
π

3

)
= −
−
√
3
2

2
+

√
3
2

2
+

2π

3
− π

3

=

√
3

4
+

√
3

4
+
π

3

=

√
3

2
+
π

3
units2

9. r =
√

3 + 1

= 2

tan θ =
1

−
√

3
(second quadrant)

θ =
5π

6

∴ −
√

3 + i = 2 cis
5π

6(
−
√

3 + i
)12

= 212 cis

(
5π

6
× 12

)
= 4096 cis(10π)

= 4096 cis 0

= 4096

10.
dy

dx
= 6x− 1

= 11

y − y1 = m(x− x1)

y − 5 = 11(x− 2)

y = 11x− 17

11. 2x+ 2y
dy

dx
= 0

2y
dy

dx
= −2x

dy

dx
= −x

y

=
3

4
y − y1 = m(x− x1)

y + 4 =
3

4
(x− 3)

4y + 16 = 3x− 9

3x− 4y = 25
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12. Points where x = −2:

−2y + y2 − (−2)3 = 11

y2 − 2y + 8 = 11

y2 − 2y − 3 = 0

(y − 3)(y + 1) = 0

The points are (−2,−1) and (−2, 3).

Differentiating:

y + x
dy

dx
+ 2y

dy

dx
− 3x2 = 0

x
dy

dx
+ 2y

dy

dx
= 3x2 − y

dy

dx
(x+ 2y) = 3x2 − y

dy

dx
=

3x2 − y
x+ 2y

At (−2,−1):

dy

dx
=

12 + 1

−2− 2

= −13

4
y − y1 = m(x− x1)

y + 1 = −13

4
(x+ 2)

4y + 4 = −13x− 26

13x+ 4y = −30

At (−2, 3):

dy

dx
=

12− 3

−2 + 6

=
9

4
y − y1 = m(x− x1)

y − 3 =
9

4
(x+ 2)

4y − 12 = 9x+ 18

9x− 4y = −30

13. (a) The column matrix Y is useful. When form-
ing the product XY, the number of units of
the commodities is multiplied by the cost of
the corresponding commodity.

(b) XY =

 100 + 120 + 200
150 + 60 + 200
50 + 180 + 200


=

 420
410
430


(c) The product gives the total cost for each of

the three models.

14. The initial case, where n = 1:

R.H.S. =
r(r1 − 1)

r − 1

= r

= L.H.S.

The statement is true for the initial case.

Assume the statement is true for n = k, i.e.

r + r2 + r3 + . . .+ rk =
r(rk − 1)

r − 1

Then for n = k + 1

L.H.S. = r + r2 + r3 + . . .+ rk + rk+1

=
r(rk − 1)

r − 1
+ rk+1

=
r(rk − 1)

r − 1
+
rk+1(r − 1)

r − 1

=
r(rk − 1)

r − 1
+
rrk(r − 1)

r − 1

=
r(rk − 1)

r − 1
+
r(rk+1 − rk)

r − 1

=
r(rk − 1 + rk+1 − rk)

r − 1

=
r(rk+1 − 1)

r − 1

= R.H.S.

Thus if the statement is true for n = k it is also
true for n = k + 1.

Hence since the statement is true for n = 1 it
follows by induction that it is true for all integer
n ≥ 1. �

15. For the matrix to be singular, the determinant
must be zero. For this matrix the determinant is
2x2 + 4. This quadratic has no real roots, so the
matrix cannot be singular for x ∈ <.

16. A2 =

[
k 4
−3 −1

] [
k 4
−3 −1

]
=

[
k2 − 12 4k − 4
−3k + 3 −11

]
A2 + A =

[
k2 − 12 4k − 4
−3k + 3 −11

]
+

[
k 4
−3 −1

]
=

[
k2 + k − 12 4k
−3k −12

]
[

0 p
q −12

]
=

[
k2 + k − 12 4k
−3k −12

]
k2 + k − 12 = 0

(k + 4)(k − 3) = 0

p = 4k

q = −3k

k = −4

p = −16

q = 12

or k = 3

p = 12

q = −9

Reject the first solution set because it does not
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satisfy p > 0 and conclude

k = 3

p = 12

q = −9

17. (a)
lnx

x
= 0

lnx = 0

x = 1

The coordinates of A are (1, 0).

(b)
dy

dx
=

(
1
x

)
(x)− (lnx)(1)

x2

=
1− lnx

x2

At B,

dy

dx
= 0

1− lnx

x2
= 0

1− lnx = 0

lnx = 1

x = e

y =
lnx

x

=
ln e

e

=
1

e

The coordinates of B are (e, 1e )

(c)
d2y

dx2
=

(
− 1
x

)
(x2)− (1− lnx)(2x)

x4

=
−x− 2x+ 2x lnx

x4

=
2x lnx− 3x

x4

=
2 lnx− 3

x3

At C,

d2y

dx2
= 0

2 lnx− 3

x3
= 0

2 lnx− 3 = 0

lnx = 1.5

x = e1.5

y =
lnx

x

=
1.5

e1.5

= 1.5e−1.5

The coordinates of C are (e1.5, 1.5e−1.5)

18. Because of the symmetry, we need only consider
one quadrant. The positive x−intercept is at

8x− 16 = 0

x = 2.

Rewriting the right bound in the first quadrant
as a function of x gives

y =
√

8x− 16

The x−coordinate of the top-right point is given
by the intersection of the top and right curves:

√
8x− 16 = 2 +

1

8
x2

8x− 16 = 4 +
1

2
x2 +

1

64
x4

This looks messy to solve, but there’s a simpler
approach: based on the symmetry we know that
this point also intersects the line y = x, giving us

2 +
1

8
x2 = x

16 + x2 = 8x

x2 − 8x+ 16 = 0

(x− 4)2 = 0

x = 4

The area in the first quadrant is given by

A =

∫ 4

0

2 +
1

8
x2 dx−

∫ 4

2

√
8x− 16 dx

Although we should be able to calculate this,
there is again a simpler approach. Rather than
use the square root function for the lower bound
of the region we will find only the area above the
line y = x. Based on the symmetry, we know
that this will give us half the area of the first
quadrant (or one eighth of the total area).

A = 2

∫ 4

0

2 +
1

8
x2 − x dx

=

∫ 4

0

4 +
1

4
x2 − 2xdx

=

[
4x+

x3

12
− x2

]4
0

=

[
x(4 +

x2

12
− x)

]4
0

= 4(4 +
42

12
− 4)− 0

=
16

3

Thus the total area is 64
3 ≈ 21.33cm2.

(Note the correct units for this answer are square
centimetres, not square units as shown in Sadler.)

It should be noted that questions like this have
several different paths to the correct answer,

23



Miscellaneous Exercise 3 Solutions to A.J. Sadler’s

some much simpler than others. You should al-
ways be on the lookout for a simpler approach,
even if it means changing track part way through
the problem as I have done here.

Another approach to this problem, possibly sim-
pler still, would be to consider the area as an 8×8
square with four parabolic ‘bites’ taken out of it
and determine the area of each of these bites as

A =

∫ 4

−4
4− (2 +

1

8
x2) dx

=

∫ 4

−4
2− 1

8
x2 dx

=

[
2x− x3

24

]4
−4

=

(
8− 16

6

)
−
(
−8 +

16

6

)
= 16− 16

3

Total area = 82 − 4

(
16− 16

3

)
=

64

3

If I were preparing this as a “display answer”,
I would include only the determination of the
points of intersection and then this last approach.
I leave the other work in this solution simply to
show students the kind of thinking process that a
capable student would go through for a complex
problem like this.

19. (a) The curve intersects the x−axis in the given
domain at x = 0 and x = π

2 . The area
enclosed by the curve and the axis is then
(using the calculator)

A =

∫ π
2

0

|3x2(1− sinx)|

= 0.451 (3 d.p.)

But this is not the exact value we require,
so we’ll use the calculator to give us the in-
definite integral, then substitute to get the
exact area:

A =
[
x3 + 3x2 cosx− 6x sinx− 6 cosx

]π
2

0

=

(
π3

8
− 3π

)
− (−6)

=
π3

8
− 3π + 6

(b) The curve intersects the line in the given
domain where

25π(2x− π)

1
6 = 3x2(1− sinx)

for which the calculator gives solutions at
x = 1.571 and x = 2.618. However, these
are not the exact values we will need for the
bounds, so it needs further work. The first
solution looks like π

2 which we can confirm:

25π(2x− π)

1
6 = 3x2(1− sinx)

25π
(
2
(
π
2

)
π − π

)
1

6 = 0

3
(π

2

)2 (
1− sin

π

2

)
= 0

Guessing that the second intercept is also a
multiple of π we obtain 2.618 ≈ 0.8333π =
5π
6 . We can also confirm this:

25π(2x− π)

1
6 = 3x2(1− sinx)

25π
(
2
(
5π
6

)
π − π

)
1

6 =
25π2

24

3

(
5π

6

)2(
1− sin

5π

6

)
=

25π2

24

The area enclosed by the curve and the line
is then

A =

∫ 5π
6

π
2

|25π(2x− π)

1
6− 3x2(1− sinx)|

= 2.355 (3 d.p.)

Again, this is not the exact value we want so
we’ll again use the calculator to obtain an
indefinite ingtegral and proceed from there.

A =

∫ 5π
6

π
2

25π(2x− π)

1
6− 3x2(1− sinx)

=

[
−16x3+46x2 cos(x)−25x2π

16

+−96x sin x−96 cos x+25xπ2

16

] 5π
6

π
2

=
−
(

1375π3

108 − 40π − 50
√
3π2

3 + 48
√

3
)

16

+
33π3

4 − 48π

16

= −121π3

432
− π

2
+

25
√

3π2

24
− 3
√

3

This is a challenging calculator task. Calcula-
tor skills involved: graphing, solving equations,
finding definite and indefinite integrals, evaluat-
ing an expression in x given a particular value of
x, storing intermediate expressions in variables,
defining functions, etc.
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Chapter 4

Exercise 4A

1–12 For these questions, rather than pre-multiply
each of O, A, B and C by the given matrix,
I will assemble [OABC] into a 2 × 4 matrix[

0 2 2 0
0 0 1 1

]
and do the matrix multiplica-

tion in a single step.

1.
[
−1 0

0 −1

] [
0 2 2 0
0 0 1 1

]
=

[
0 −2 −2 0
0 0 −1 −1

]

-3 3

-3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a 180◦ rotation.

2.

[
0 −1
1 0

] [
0 2 2 0
0 0 1 1

]
=

[
0 0 −1 −1
0 2 2 0

]

-3 3

3

x

y

O

C

A

B

O’C’

A’B’

This represents a 90◦ anticlockwise rotation.

3.

[
1 0
0 −1

] [
0 2 2 0
0 0 1 1

]
=

[
0 2 2 0
0 0 −1 −1

]

3

-3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a reflection in the x−axis.

4.

[
−1 0

0 1

] [
0 2 2 0
0 0 1 1

]
=

[
0 −2 −2 0
0 0 1 1

]

-3 3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a reflection in the y−axis.

5.

[
0 1
1 0

] [
0 2 2 0
0 0 1 1

]
=

[
0 0 1 1
0 2 2 0

]

3

3

x

y

O

C

A

B

O’ C’

A’ B’

This represents a reflection in the line y = x.

6.
[

0 −1
−1 0

] [
0 2 2 0
0 0 1 1

]
=

[
0 0 −1 −1
0 −2 −2 0

]

-3 3

-3

3

x

y

O

C

A

B

O’
C’

A’B’

This represents a reflection in the line y = −x.

7.

[
2 0
0 1

] [
0 2 2 0
0 0 1 1

]
=

[
0 4 4 0
0 0 1 1

]

3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a horizontal dilation of factor 2.

8.

[
1 0
0 3

] [
0 2 2 0
0 0 1 1

]
=

[
0 2 2 0
0 0 3 3

]

3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a vertical dilation of factor 3.

9.

[
2 0
0 3

] [
0 2 2 0
0 0 1 1

]
=

[
0 4 4 0
0 0 3 3

]

3

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a dilation with a horizontal scale
factor of 2 and vertical scale factor of 3.

10.

[
3 0
0 3

] [
0 2 2 0
0 0 1 1

]
=

[
0 6 6 0
0 0 3 3

]
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3 6

3

x

y

O

C

A

B

O’

C’

A’

B’

This represents a dilation with uniform scale
factor of 3.

11.

[
1 2
0 1

] [
0 2 2 0
0 0 1 1

]
=

[
0 2 4 2
0 0 1 1

]

3 x

y

O

C

A

B

O’

C’

A’

B’

This represents a shear parallel to the x−axis
with scale factor of 2.

12.

[
1 0
3 1

] [
0 2 2 0
0 0 1 1

]
=

[
0 2 2 0
0 6 7 1

]

3

3

6

x

y

O

C

A

B

O’

C’

A’

B’

This represents a shear parallel to the y−axis
with scale factor of 3.

13. The working needed here is quite straightfor-
ward. I present a worked solution for the first
matrix only.

(a) det

[
−1 0

0 −1

]
= −1×−1 + 0× 0 = 1

(b) Area OABC = 2× 1 = 2

Area O′A′B′C′ = 2× 1 = 2

Area O′A′B′C′

Area OABC
=

2

2
= 1

Exercise 4B

1. (a) For matrix A, (1, 0) maps to (0,−1) and
(0, 1) maps to (1, 0); the required matrix is

A =

[
0 1
−1 0

]
For matrix B, (1, 0) maps to (−1, 0) and
(0, 1) maps to (0,−1); the required matrix
is

B =

[
−1 0

0 −1

]
For matrix C, (1, 0) maps to (0, 1) and (0, 1)
maps to (−1, 0); the required matrix is

C =

[
0 −1
1 0

]

(b) A2 =

[
0 1
−1 0

]2
=

[
02 + 1×−1 0× 1 + 1× 0

−1× 0 + 0×−1 −1× 1 + 02

]
=

[
−1 0

0 −1

]
= B

(c) C2 =

[
0 −1
1 0

]2
=

[
02 − 1× 1 0×−1− 1× 0

1× 0 + 0× 1 1×−1 + 02

]
=

[
−1 0

0 −1

]
= B

(d) A3 = A2A

= BA

=

[
−1 0

0 −1

] [
0 1
−1 0

]
=

[
−1× 0 + 0×−1 −1× 1 + 02

02 + (−1)2 0× 1− 1× 0

]
=

[
0 −1
1 0

]
= C
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(e) B2 =

[
−1 0

0 −1

]2
=

[
(−1)2 + 02 −1× 0 + 0×−1

0×−1− 1× 0 02 + (−1)2

]
=

[
1 0
0 1

]
= I

(f) A−1 =
1

02 − (−1× 1)

[
0 −1
1 0

]
=

1

1

[
0 −1
1 0

]
=

[
0 −1
1 0

]
= C

(Alternatively, show that AC = I)

(g) B−1 =
1

(−1)2 − 02

[
−1 0

0 −1

]
=

1

1

[
−1 0

0 −1

]
=

[
−1 0

0 −1

]

= B
Alternatively, since we have already shown
that B2 = I,

B2 = I

B−1B2 = B−1I

(B−1B)B = B−1

IB = B−1

B = B−1

2. (a)

[
1
0

]
maps to

[
1
0

]
[

0
1

]
maps to

[
0
−1

]
The transformation matrix is

[
1 0
0 −1

]
(b)

[
1
0

]
maps to

[
−1

0

]
[

0
1

]
maps to

[
0
1

]
The transformation matrix is

[
−1 0

0 1

]
(c)

[
1
0

]
maps to

[
−1

0

]
[

0
1

]
maps to

[
0
−1

]
The transformation matrix is

[
−1 0

0 −1

]
(d) A reflection in the x−axis followed by a re-

flection in the y−axis is represented by pre-
multiplying the matrix for the first reflec-

tion by the matrix for the second, i.e.[
−1 0

0 1

] [
1 0
0 −1

]
=

[
−1 0

0 −1

]
A reflection in the y−axis followed by a re-
flection in the x−axis is represented by[

1 0
0 −1

] [
−1 0

0 1

]
=

[
−1 0

0 −1

]
(e) Compare the results from (d) and (e).

3.

[
1
0

]
maps to

[
0
−1

]
[

0
1

]
maps to

[
−1

0

]
The transformation matrix is P=

[
0 −1
−1 0

]
If P is its own inverse, then P2 = I.

P2 =

[
0 −1
−1 0

] [
0 −1
−1 0

]
=

[
1 0
0 1

]
= I

4.

[
1
0

]
maps to

[
3
0

]
[

0
1

]
maps to

[
0
1

]
The transformation matrix is

[
3 0
0 1

]
The determinant of this matrix is 3×1−0×0 = 3
as expected.

5. (a) No working needed.

(b) No working needed. (A, B, C and D are the
columns of the second matrix and A′, B′, C′

and D′ are the columns of the product.)

6. TA = A′

T−1TA = T−1A′

A = T−1A′

T−1 =
1

1× 1− 2× 0

[
1 −2
0 1

]
=

[
1 −2
0 1

]
A =

[
1 −2
0 1

] [
7
3

]
=

[
1
3

]
B =

[
1 −2
0 1

] [
3
1

]
=

[
1
1

]
C =

[
1 −2
0 1

] [
−2
−3

]
=

[
4
−3

]
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A, B and C have coordinates (1, 3), (1, 1) and
(4,−3) respectively.

7. T−1 =
1

2× 1− 0×−3

[
1 0
3 2

]
=

1

2

[
1 0
3 2

]
A =

1

2

[
1 0
3 2

] [
2
0

]
=

1

2

[
2
6

]
B =

1

2

[
1 0
3 2

] [
−2

5

]
=

1

2

[
−2

4

]
C =

1

2

[
1 0
3 2

] [
0
2

]
=

1

2

[
0
4

]
A, B and C have coordinates (1, 3), (−1, 2) and
(0, 2) respectively.

8.

[
0 1
1 0

]
P = P′[

1 4
0 1

]
P′ = P′′[

1 4
0 1

] [
0 1
1 0

]
P = P′′[

4 1
1 0

]
P = P′′

Matrix

[
4 1
1 0

]
will transform PQR directly to

P′′Q′′R′′.

9.

[
1 0
0 −1

] [
1 0
2 1

]
=

[
1 0
−2 −1

]
[

1 0
−2 −1

]−1
=

1

−1− 0

[
−1 0

2 1

]
=

[
1 0
−2 −1

]
Matrix

[
1 0
−2 −1

]
will transform PQR directly

to P′′Q′′R′′.

Matrix

[
1 0
−2 −1

]
will transform P′′Q′′R′′ di-

rectly to PQR. (The matrix is its own inverse.)

10. A shear parallel to the y-axis, scale factor 3,

transforms

[
1
0

]
to

[
1
3

]
and

[
0
1

]
to

[
0
1

]
and so is represented by

[
1 0
3 1

]
.

A clockwise rotation of 90◦ about the origin

transforms

[
1
0

]
to

[
0
−1

]
and

[
0
1

]
to

[
1
0

]
and so is represented by

[
0 1
−1 0

]
.

The single matrix to perform both these trans-
formations in sequence is[

0 1
−1 0

] [
1 0
3 1

]
=

[
3 1
−1 0

]

11. These are the same transformations as in the pre-
vious question, simply applied in the opposite or-
der, so the single matrix to perform both these
transformations in this new sequence is[

1 0
3 1

] [
0 1
−1 0

]
=

[
0 1
−1 3

]

12. Post-multiply both sides of the equation with the

inverse of

[
1 −3
2 1

]
to eliminate it from the

LHS:[
a b
c d

] [
1 −3
2 1

]
=

[
12 −1
7 0

]
[
a b
c d

]
=

[
12 −1
7 0

] [
1 −3
2 1

]−1
[

1 −3
2 1

]−1
=

1

1 + 6

[
1 3
−2 1

]
=

1

7

[
1 3
−2 1

]
[
a b
c d

]
=

[
12 −1
7 0

]
1

7

[
1 3
−2 1

]
=

1

7

[
14 35
7 21

]
=

[
2 5
1 3

]
so a = 2, b = 5, c = 1 and d = 3.

13. (a)

[
1 0
2 1

] [
1 4
0 1

]
=

[
1 4
2 9

]
(b)

[
0 1
−1 0

] [
1 4
2 9

]
=

[
2 9
−1 −4

]
(c)

[
1 0
2 1

]−1
=

1

1− 0

[
1 0
−2 1

]
=

[
1 0
−2 1

]
(d) First, to transform A3B3C3D3 to

A2B2C2D2[
0 1
−1 0

]−1
=

1

0 + 1

[
0 −1
1 0

]
=

[
0 −1
1 0

]
then to further transform the result to
A1B1C1D1 we use the matrix we obtained
in (c), so the single matrix that combines
both is[

1 0
−2 1

] [
0 −1
1 0

]
=

[
0 −1
1 2

]
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14. A reflection in the x-axis transforms

[
1
0

]
to[

1
0

]
and

[
0
1

]
to

[
0
−1

]
and so is represented

by

[
1 0
0 −1

]
.

A reflection in the line y = x transforms

[
1
0

]
to[

0
1

]
and

[
0
1

]
to

[
1
0

]
and so is represented

by

[
0 1
1 0

]
.

A 90◦ clockwise rotation is represented by[
0 1
−1 0

]
(see question 10).

The matrix that represents these three transfor-
mations in sequence is[

0 1
−1 0

] [
0 1
1 0

] [
1 0
0 −1

]
=

[
0 1
−1 0

] [
0 −1
1 0

]
=

[
1 0
0 1

]
which is the identity matrix, resulting in the orig-
inal shape in the original position.

15. (a) det T = 4 × 1 − (−2) × 1 = 6. Given that
the area of OABC is 6 units2, the area of
O′A′B′C′ is 6× 6 = 36 units2.

(b)
[

4 −2
1 1

] [
0 3 3 0
0 0 2 2

]
=

[
0 12 8 −4
0 3 5 2

]
The coordinates of O′, A′, B′ and C′ are
(0, 0), (12, 3), (8, 5) and (−4, 2) respectively.

(c) -4 4 8 12

4

x

y

O

C

A

B

O’

C’

A’

B’

(d) There are number of straightforward ways
of determining the area of the parallelo-
gram. For example if we slice off the part of
the parallelogram that is left of the y-axis
and slide it to the other end (as shown be-
low), we get a parallelogram with a (verti-
cal) base of 3 and (horizontal) perpendicular
height of 12, yielding an area of 36.

-4 4 8 12

4

x

y

O’

C’

A’

B’

16. (a)

-6 -3 3 6

-6

-3

3

6

x

y

A

B

C

D

(b) Area = 8 units2 (area of any square, rhom-
bus or kite is half the product of its diago-
nals).

(c) det M = 1 × 3 − 2 × −1 = 5. The area of
A′B′C′D′ is 5× 8 = 40 units2.

(d)
[

1 2
−1 3

] [
−2 0 2 0

0 −2 0 2

]
=

[
−2 −4 2 4

2 −6 −2 6

]

-6 -3 3 6

-6

-3

3

6

x

y

A

B

C

DA’

B’

C’

D’

Area = 40 units2.

17. Every point on the line y = 2x+ 3 can be repre-

sented by

[
x

2x+ 3

]
.

To prove:[
2 −1
−2 1

] [
x

2x+ 3

]
=

[
−3

3

]
for all x.

Proof:

LHS =

[
2 −1
−2 1

] [
x

2x+ 3

]
=

[
2(x)− (2x+ 3)
−2(x) + (2x+ 3)

]
=

[
−3

3

]
= RHS

�

Notice that the matrix

[
2 −1
−2 1

]
is singular

(i.e. it has a determinant of zero) and therefore is
not invertable. This is a requirement of any ma-
trix that transforms two or more distinct points
to the same position in the image.
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18. Every point on the line y = x − 1 can be repre-

sented by

[
x

x− 1

]
.

[
1 0
2 1

] [
x

x− 1

]
=

[
x

2(x) + (x− 1)

]
=

[
x

3x− 1

]
The equation of the image line is y = 3x− 1.

19. To prove: [
1 3
3 9

] [
a
b

]
=

[
x

3x

]
for all a, b and for some relationship between x
and a and b.

Proof:

LHS =

[
1 3
3 9

] [
a
b

]
=

[
a+ 3b
3a+ 9b

]
=

[
a+ 3b

3(a+ 3b)

]
Let x = a+ 3b

then LHS =

[
x

3x

]
= RHS

�

20. (a)

[
6 2
3 1

] [
x

5− 3x

]
=

[
6(x) + 2(5− 3x)
3(x) + (5− 3x)

]
=

[
10
5

]
The line y = 5 − 3x is transformed to the
point (10, 5).

(b)

[
6 2
3 1

] [
a
b

]
=

[
6a+ 2b
3a+ b

]
Let x = 6a+ 2b[

6 2
3 1

] [
a
b

]
=

[
x
x
2

]
Points on the x-y plane are transformed to
the line y = x

2 or 2y = x.

21. Let (a, b) be an arbitrary point before transfor-
mation and (a′, b′) the corresponding point after
transformation.[

a′

b′

]
=

[
3 0
2 1

] [
a
b

]
=

[
3a

2a+ b

]

If the point before transformation lies on the line
y = m1x + p then b = m1a + p and the trans-
formed point is[

a′

b′

]
=

[
3a

2a+ (m1a+ p)

]
=

[
3a

(m1 + 2)a+ p

]
We can turn this into a pair of parametric equa-
tions then convert that to a Cartesian equation
of a line:

x = 3a

y = (m1 + 2)a+ p

=
(m1 + 2)(3a)

3
+ p

=
m1 + 2

3
x+ p

which is in the form y = m2x + p where m2 =
m1+2

3 , as required.

Now consider two lines perpendicular to each
other both before and after transformation.

Let q be the gradient of the first line before trans-
formation.

Since the lines are perpendicular, the gradient of
the second line is − 1

q .

Transforming the first line results in a gradient
of q+2

3 .

Transforming the second line results in a gradient

of
− 1
q+2

3 = −1+2q
3q .

Since the lines a perpendicular after transforma-
tion,

q + 2

3
= − 3q

−1 + 2q

=
3q

1− 2q

(q + 2)(1− 2q) = 9q

q − 2q2 + 2− 4q = 9q

−2q2 + 2− 12q = 0

q2 − 1 + 6q = 0

q2 + 6q − 1 = 0

(q + 3)2 − 9− 1 = 0

(q + 3)2 = 10

q + 3 = ±
√

10

q = −3±
√

10

Hence the gradients of the two lines before trans-
formation are −3 +

√
10 and −3−

√
10.
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Exercise 4C

1. (a)

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

]
=

[ √
3
2 − 1

2
1
2

√
3
2

]

=
1

2

[ √
3 −1

1
√

3

]
(b)

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]
=

[ √
2
2 −

√
2
2√

2
2

√
2
2

]

=

√
2

2

[
1 −1
1 1

]
(c)

[
cos 60◦ − sin 60◦

sin 60◦ cos 60◦

]
=

[
1
2 −

√
3
2√

3
2

1
2

]

=
1

2

[
1 −

√
3√

3 1

]
(d)

[
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

]
=

[
1 −1
1 0

]
(e) Two consecutive 30◦ anticlockwise rotations

about the origin are represented by

1

2

[ √
3 −1

1
√

3

]
1

2

[ √
3 −1

1
√

3

]
=

1

4

[
3− 1 −2

√
3

2
√

3 −1 + 3

]
=

1

2

[
1 −

√
3√

3 1

]
which is a 60◦ anticlockwise rotation about
the origin.

(f) A 30◦ anticlockwise rotation about the ori-
gin followed by a 60◦ anticlockwise rotation
about the origin is represented by

1

2

[
1 −

√
3√

3 1

]
1

2

[ √
3 −1

1
√

3

]
=

1

4

[ √
3−
√

3 −1− 3

3 + 1 −
√

3 +
√

3

]
=

[
0 −1
1 0

]
which is a 90◦ anticlockwise rotation about
the origin.

(g) Two consecutive 45◦ anticlockwise rotations
about the origin are represented by

√
2

2

[
1 −1
1 1

] √
2

2

[
1 −1
1 1

]
=

2

4

[
1− 1 −1− 1
1 + 1 −1 + 1

]
=

1

2

[
0 −2
2 0

]
=

[
0 −1
1 0

]
which is a 90◦ anticlockwise rotation about
the origin.

2. (a)

[
cos(2× 30) sin(2× 30)
sin(2× 30) − cos(2× 30)

]
=

[
cos 60 sin 60
sin 60 − cos 60

]
=

[
1
2

√
3
2√

3
2 − 1

2

]

=
1

2

[
1
√

3√
3 −1

]
(b)

[
cos(2× 60) sin(2× 60)
sin(2× 60) − cos(2× 60)

]
=

[
cos 120 sin 120
sin 120 − cos 120

]
=

[
− 1

2

√
3
2√

3
2

1
2

]

=
1

2

[
−1

√
3√

3 1

]
For (a),(

1

2

[
1
√

3√
3 −1

])2

=
1

4

[
1 + 3

√
3−
√

3√
3−
√

3 3 + 1

]
=

[
1 0
0 1

]
Similarly for (b),(

1

2

[
−1

√
3√

3 1

])2

=
1

4

[
1 + 3 −

√
3 +
√

3

−
√

3 +
√

3 3 + 1

]
=

[
1 0
0 1

]
Any reflection must be its own inverse since re-
flecting a reflection restores the original. Con-
sider the general form for a reflection:[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]2
=

[
cos2 2θ + sin2 2θ cos 2θ sin 2θ − cos 2θ sin 2θ

cos 2θ sin 2θ − cos 2θ sin 2θ sin2 2θ + cos2 2θ

]
=

[
1 0
0 1

]

3.

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
4. A rotation of angle A followed by a rotation of

angle B is equivalent to a rotation of angle A+B.

A rotation of angle A followed by a
rotation of angle B is represented by[

cosA − sinA
sinA cosA

] [
cosB − sinB
sinB cosB

]
=

[
cosA cosB − sinA sinB − cosA sinB − sinA cosB
sinA cosB + cosA sinB − sinA sinB + cosA cosB

]
=

[
cosA cosB − sinA sinB −(sinA cosB + cosA sinB)
sinA cosB + cosA sinB cosA cosB − sinA sinB

]
A single rotation of angle A + B is represented

by

[
cos(A+B) − sin(A+B)
sin(A+B) cos(A+B)

]
Equating these gives
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[
cos(A+B) − sin(A+B)
sin(A+B) cos(A+B)

]
=

[
cosA cosB − sinA sinB −(sinA cosB + cosA sinB)
sinA cosB + cosA sinB cosA cosB − sinA sinB

]
Equating corresponding matrix elements from
any column or row gives:

sin(A+B) = sinA cosB + cosA sinB

and cos(A+B) = cosA cosB − sinA sinB

as required. �

5. (a) The 180◦ rotation is represented by[
cos 180◦ − sin 180◦

sin 180◦ cos 180◦

]
=

[
−1 0

0 −1

]
This transformation leaves point O un-
changed at the origin. We need to transform
this point to (6, 4) so the total transforma-
tion is represented by[

x′

y′

]
=

[
−1 0

0 −1

] [
x
y

]
+

[
6
4

]
(b) Let θ be the angle that the line OO′ makes

with the x-axis. This is the angle that
O′A′B′C′ must be rotated clockwise in or-
der to transform O′ onto the x-axis. Since

O′ has coordinates (6, 4),

tan θ =
4

6
=

2

3

sin θ =
4√

42 + 62
=

4√
52

=
4

2
√

13
=

2√
13

cos θ =
6

2
√

13
=

3√
13

The matrix to achieve this clockwise rota-
tion (see question 3) is[

cos θ sin θ
− sin θ cos θ

]
=

[
3√
13

2√
13

− 2√
13

3√
13

]

=
1√
13

[
3 2
−2 3

]
(c) 1√

13

[
3 2
−2 3

] [
6 5 5 6
4 4 3 3

]
=

1√
13

[
26 23 21 24
0 2 −1 −3

]

• O′′( 26√
13
, 0) = (2

√
13, 0),

• A′′( 23√
13
, 2√

13
),

• B′′( 21√
13
,− 1√

13
),

• C′′( 24√
13
,− 3√

13
).

(You could, if preferred, give these with ra-
tional denominators and arrive at the same
answers Sadler gives.)

Miscellaneous Exercise 4

1. Choose every possibility where the number of
columns in the first is equal to the number of
rows in the second. Thus

• A has 3 columns so it can pre-multiply every
matrix with 3 rows, resulting in the prod-
ucts AC and AD.

• B also has 3 columns, resulting in products
BC and BD.

• C has only 1 column so it can pre-multiply
every matrix with one row: CB.

• D has three columns, resulting in the prod-
ucts DC and D2.

2. No working necessary for these questions.

3. XY cannot be formed – X has three columns but
Y has only one row.

YX cannot be formed – Y has three columns but
X has five rows.

XZ can be formed – X has three columns and Z
has three rows.

ZX cannot be formed – Z has one column and X
has five rows.

The product XZ has five rows (number of rows
in X) and one column (number of columns in
Z). Each row is the sum of the number of wins
times the number of points per win, the number
of draws times the number of points per draw
and the number of losses times the number of
points per loss, that is, the total points for the
corresponding team.

4. (a) 4eπi/6 = 4 cis
π

6

= 4
(

cos
π

6
+ i sin

π

6

)
= 4×

√
3

2
+ 4× 1

2
i

= 2
√

3 + 2i
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(b) −20eπi/3 = −20 cis
π

3

= −20
(

cos
π

3
+ i sin

π

3

)
= −20× 1

2
− 20×

√
3

2
i

= −10− 10
√

3i

(c) 20e−πi/3 = 20 cis
(
−π

3

)
= 20

(
cos
(
−π

3

)
+ i sin

(
−π

3

))
= 20× 1

2
− 20×

√
3

2
i

= 10− 10
√

3i

(d) 1 + eπi/2 = 1 + cis
π

2

= 1 + cos
π

2
+ i sin

π

2
= 1 + 0 + i

= 1 + i

5. P = Q + PR

P− PR = Q

P(I− R) = Q

P = Q(I− R)−1

=

[
2 1
3 −1

]([
1 0
0 1

]
−
[

2 −3
1 −1

])−1
=

[
2 1
3 −1

] [
−1 3
−1 2

]−1
=

[
2 1
3 −1

] [
2 −3
1 −1

]
=

[
5 −7
5 −8

]

6. AB =

[
x 2
y 1

] [
3 1
−1 4

]
=

[
3x− 2 x+ 8
3y − 1 y + 4

]
BA =

[
3 1
−1 4

] [
x 2
y 1

]
=

[
3x+ y 6 + 1
−x+ 4y −2 + 4

]
=

[
3x+ y 7
−x+ 4y 2

]
Given AB=BA, we can equate corresponding ma-
trix elements. From element 1,2:

x+ 8 = 7

x = −1

From element 2,2:

y + 4 = 2

y = −2

Confirm these results by substitution:

AB =

[
3(−1)− 2 7
3(−2)− 1 2

]
=

[
−5 7
−7 2

]
BA =

[
3(−1) + (−2) 7
−(−1) + 4(−2) 2

]
=

[
−5 7
−7 2

]

Hence [
p q
r s

]
=

[
−5 7
−7 2

]

∴ p = −5

q = 7

r = −7

s = 2

7. A

[
2 1
3 2

]
=

[
0 −1
5 2

]
A =

[
0 −1
5 2

] [
2 1
3 2

]−1
=

[
0 −1
5 2

]
1

4− 3

[
2 −1
−3 2

]
=

[
0 −1
5 2

] [
2 −1
−3 2

]
=

[
3 −2
4 −1

]
8. k = z41

= (2 cis 40◦)4

= 24 cis(40× 4)◦

= 16 cis 160◦.

The other roots are equal to z1 rotated a mul-
tiple of 90◦, i.e. 2 cis(130◦), 2 cis(−50◦) and
2 cis(−140◦).

9.

[
1 3
0 1

] [
2 2 4
0 3 3

]
=

[
2 11 13
0 3 3

]

4 8 12

4

x

y

C

A

B C’

A’

B’

This represents a shear parallel to the x-axis with
scale factor 3.

10. To prove:

n∑
i=1

i(i+ 1)(i+ 2) =
n

4
(n+ 1)(n+ 2)(n+ 3)
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Assume this is true for some n = k, then for
n = k + 1:

LHS =

k+1∑
i=1

i(i+ 1)(i+ 2)

=

(
k∑
i=1

i(i+ 1)(i+ 2)

)
+ (k + 1)(k + 2)(k + 3)

=
k

4
(k + 1)(k + 2)(k + 3) + (k + 1)(k + 2)(k + 3)

= (k + 1)(k + 2)(k + 3)(
k

4
+ 1)

= (k + 1)(k + 2)(k + 3)(
k + 4

4
)

=
1

4
(k + 1)(k + 2)(k + 3)(k + 4)

=
k + 1

4
(k + 2)(k + 3)(k + 4)

= RHS

Therefore, if it is true for some n = k then it is
also true for n = k + 1.

For n = 1,

LHS =

1∑
i=1

i(i+ 1)(i+ 2)

= 1(2)(3)

= (1)(2)(3)
4

4

=
1

4
(2)(3)(4)

= RHS

Therefore the proposition is true for n = 1 and
hence by mathematical induction, true for all
n, n ≥ 1. �

11.

(a) From the graph, the global maximum ap-
pears to be where x = π with coordinates
(π, 2π + cos 4π) = (π, 2π + 1). (This is not
actually a local maximum, since the gradi-
ent at that point is positive.)

(b) From the graph, the global minimum corre-
sponds to the first local minimum which is
the second stationary point.

dy

dx
= 2− 4 sin 4x

at the stationary points,

dy

dx
= 0

2− 4 sin 4x = 0

sin 4x =
1

2

4x =
5π

6

(ignoring the first solution at 4x = π
6 as this

will yield the first stationary point and we
want the second)

x =
5π

24

y =
5π

12
+ cos

5π

6

=
5π

12
−
√

3

2

=
5π − 6

√
3

12

Thus the coordinates of the global minimum

are ( 5π
24 ,

5π−6
√
3

12 ).

(c) The local minimum that is not the global
minimum is the fourth stationary point:

sin 4x =
1

2

4x =
17π

6

x =
17π

24

y =
17π

12
+ cos

5π

6

=
17π

12
−
√

3

2

=
17π − 6

√
3

12

Thus the coordinates of the local minimum
are ( 17π

24 ,
17π−6

√
3

12 ).

(d) The two local minima are the first and third
stationary points

sin 4x =
1

2

4x =
π

6
or 4x =

13π

6

x =
π

24
or x =

13π

24

y =
π

12
+ cos

π

6
or y =

13π

12
+ cos

π

6

=
π

12
+

√
3

2
=

13π

12
+

√
3

2

=
π + 6

√
3

12
=

13π + 6
√

3

12

Thus the coordinates of the local minimum
are ( π24 ,

π+6
√
3

12 ) and ( 13π
24 ,

13π+6
√
3

12 ).
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12. cis 4θ = (cis θ)4

= (cos θ + i sin θ)4

= cos4 θ

+ 4 cos3 θ(i sin θ)

+ 6 cos2 θ(i2 sin2 θ)

+ 4 cos θ(i3 sin3 θ)

+ i4 sin4 θ

= cos4 θ

+ 4i cos3 θ sin θ

− 6 cos2 θ sin2 θ

− 4i cos θ sin3 θ

+ sin4 θ

= (cos4 θ − 6 cos2 θ sin2 θ + sin4 θ)

+ i(4 cos3 θ sin θ − 4 cos θ sin3 θ)

Re(cis 4θ) = cos 4θ

= cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

Im(cis 4θ) = sin 4θ

= 4 cos3 θ sin θ − 4 cos θ sin3 θ

13. AP + BP + P = Q

AP + BP + IP = Q

(A + B + I)P = Q

P = (A + B + I)−1Q

A + B + I =

[
3 −1
8 0

]
+

[
4 3
−1 1

]
+

[
1 0
0 1

]
=

[
8 2
7 2

]
P =

[
8 2
7 2

]−1 [ −2 −2
−1 −3

]
=

1

2

[
2 −2
−7 8

] [
−2 −2
−1 −3

]
=

1

2

[
−2 2

6 −10

]
=

[
−1 1

3 −5

]

14. (a) To prove:

AB−1 = B−1A

Proof:

LHS = AB−1

= IAB−1

= B−1BAB−1

= B−1ABB−1

= B−1AI

= B−1A

= RHS

�

(b) To prove:

BA−1 = A−1B

Proof:

LHS = BA−1

= IBA−1

= A−1ABA−1

= A−1BAA−1

= A−1BI

= A−1B

= RHS

�

15. (a) z + z̄ = 2 Re(z)

so z + z̄ = 4

becomes 2 Re(z) = 4

Re(z) = 2

-1 1 2 3 4 5

-3

-2

-1

1

2

3

Re

Im

(b) This is a circle centred at 0 + i and radius
2:

-3 -2 -1 1 2 3

-2

-1

1

2

3

4

Re

Im

(c) This is a region the same shape as

0 ≤ arg(z) ≤ 2π

3

but translated 2 units right:

-1 1 2 3 4 5
-1

1

2

3

4

5

Re

Im

16. There is no conflict. The “proof” supposes that
A−1 exists. In neither of the examples is this the
case. In Example 1, A is not a square matrix,
and hence no inverse exists. In Example 2, A
is square, but it is singular so again no inverse
exists.

What the proof actually shows is that if AB =
AC and A is a non-singular square matrix,
then B = C.
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17. Let θ = ∠AOB.

Let s be the slant height of the resulting cone.
This is equal to the radius of the original circle,
that is, s =AO.

Let r be the radius of the cone.

Let h be the perpendicular height of the cone.

The circumference of the original circle is 2πs.
The fraction of this that is removed by sector
AOB is θ

2π , so the fraction remaining is

1− θ

2π
=

2π − θ
2π

with the length of the remaining part of the cir-
cumference given by

l =
2π − θ

2π
(2πs)

This becomes the circumference of the base of
the cone, giving us the radius of the cone

r =
l

2π

=
(2π − θ)s

2π

The perpendicular height of the cone can be
found using Pythagoras’ theorem since the slant
height, perpendicular height and radius of the
cone form a right triangle:

h =
√
s2 − r2

=

√
s2 − (2π − θ)2s2

4π2

=

√
s2

4π2
(4π2 − (2π − θ)2)

=
s

2π

√
4π2 − (2π − θ)2

=
s

2π

√
4π2 − (4π2 − 4πθ + θ2)

=
s

2π

√
4πθ − θ2

The volume of the cone is given by

V =
1

3
πr2h

=
1

3

(
(2π − θ)s

2π

)2
s

2π

√
4πθ − θ2

=
(1) ((2π − θ)s)2 (s)

√
4πθ − θ2

(3)(2π)2(2π)

=
(2π − θ)2s2(s)

√
4πθ − θ2

3(2π)3

=
(2π − θ)2s3

√
4πθ − θ2

3(2π)3

=
s3

3(2π)3
(2π − θ)2

√
4πθ − θ2

Differentiating with respect to θ (and bearing in
mind that s is constant):

dV

dθ
=

s3

3(2π)3

(
2(2π − θ)(−1)

√
4πθ − θ2 +

(2π − θ)2(4π − 2θ)

2
√

4πθ − θ2

)
=

s3

3(2π)3

(
−2(2π − θ)

√
4πθ − θ2 +

(2π − θ)22(2π − θ)
2
√

4πθ − θ2

)
=

s3

3(2π)3

(
−2(2π − θ)

√
4πθ − θ2 +

(2π − θ)3√
4πθ − θ2

)
=

s3

3(2π)3
−2(2π − θ)(4πθ − θ2) + (2π − θ)3√

4πθ − θ2

At the maximum volume, this derivative is zero.

s3

3(2π)3
−2(2π − θ)(4πθ − θ2) + (2π − θ)3√

4πθ − θ2
= 0

−2(2π − θ)(4πθ − θ2) + (2π − θ)3 = 0

−2(4πθ − θ2) + (2π − θ)2 = 0

(the previous step is only valid because we know
2π − θ 6= 0)

−8πθ + 2θ2 + 4π2 − 4πθ + θ2 = 0

3θ2 − 12πθ + 4π2 = 0

3(θ − 2π)2 − 12π2 + 4π2 = 0

3(θ − 2π)2 − 8π2 = 0

3(θ − 2π)2 = 8π2

(θ − 2π)2 =
2

3
(2π)2

θ − 2π = ±
√

2

3
(2π)

θ = 2π ±
√

6

3
(2π)

= 2π

(
1−
√

6

3

)

=
2π(3−

√
6)

3

(in the second last step, discarding the result that
would result in θ > 2π.)

Converting to degrees gives

θ = 120(3−
√

6)

= 66.1◦ (1 d.p.)
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Chapter 5

Exercise 5A

1.

(a)

From
Rain today No rain today

To

[ ]
Rain next day 0.7 0.2
No rain next day 0.3 0.8

(b) The tree diagram:
Today Next Day In Two Days

rain

no rain

rain

no rain

rain

no rain

rain

no rain

rain

no rain

rain

no rain

rain

no rain

0.7

0.3

0.2

0.8

0.7

0.3

0.2

0.8

0.7

0.3

0.2

0.8

(0.49)

(0.21)

(0.06)

(0.24)

(0.14)

(0.06)

(0.16)

(0.64)

gives us the transition matrix
From

Rain today No rain today

To

[ ]
Rain in 2 days 0.49+0.06 0.14+0.16
No rain in 2 days 0.21+0.24 0.64+0.06

which simplifies to
From

Rain today No rain today

To

[ ]
Rain in 2 days 0.55 0.30
No rain in 2 days 0.45 0.70

and squaring the first matrix[
0.7 0.2
0.3 0.8

]2
=

[
0.55 0.30
0.45 0.70

]
gives the same result.

2. (a)

To

Tom has
ball 1

pass later

Tim has
ball 1

pass later

Tony has
ball 1

pass later

From




Tom has ball now 0 1
2

1
2

Tim has ball now 2
5 0 3

5

Tony has ball now 3
4

1
4 0

(b) For two passes later, the probabilities are 0 1
2

1
2

2
5 0 3

5
3
4

1
4 0


2

=


23
40

1
8

3
10

9
20

7
20

1
5

1
10

3
8

21
40


For three passes later, the probabilities are 0 1

2
1
2

2
5 0 3

5
3
4

1
4 0


3

=


11
40

29
80

29
80

29
100

11
40

87
200

87
160

29
160

11
40


Using these,

i. From Tom to Tony after two passes,
refer to the cell in the first row (from
Tom) and third column (to Tony): the
probability is 3

10 .

ii. From Tony to Tim after two passes, re-
fer to the cell in the third row (from
Tony) and second column (to Tim): the
probability is 3

8 .

iii. From Tim back to Tim after three
passes, refer to the cell in the second
row (from Tim) and second column (to
Tim): the probability is 11

40 .

iv. From Tom back to Tom after three
passes, refer to the cell in the first row
(from Tom) and first column (to Tom):
the probability that he will have the
ball is 11

40 , so the probability that he will
not have the ball is 29

40 .

3. Let R be the transition matrix for Roz’s coffee
shop visits:

To

A
next
week

B
next
week

C
next
week

From




A this week 1
10

1
2

2
5

B this week 1
3

1
6

1
2

C this week 1
4

1
4

1
2

(a) From cell (3,3) of R, p = 1
2 .

(b) R3 =

 0.228 0.300 0.472
0.245 0.277 0.479
0.239 0.284 0.477


so p = 0.477 (3 d.p.).

(c) R10 =

 0.238 0.286 0.476
0.238 0.286 0.476
0.238 0.286 0.476


so p = 0.476 (3 d.p.).

Notice how all three rows are identical to
three decimal places. This indicates that
after ten weeks it makes no difference to
the probabilities (at this level of precision)
which coffee shop Roz started in. We have
reached the long-range expectation for the
three coffee shops.

4. The transition matrix T is
To

Labour
next

election

Conservative
next

election

Other
next

election

From




Labour this election 0.81 0.07 0.12

Conservative this election 0.13 0.78 0.09

Other this election 0.13 0.12 0.75
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(a) T 3 =

 0.59 0.17 0.24
0.28 0.52 0.20
0.28 0.24 0.49


so the probability of a Labour voter in one
election voting Labour three elections later
is 0.59 (from cell (1,1)).

(b) To vote Labour in each of the next three
elections, the probability is 0.813 = 0.53.

(c) In addition to consistently voting Labour,
answer (a) includes all combinations of vot-
ing behaviour that start with Labour, have
votes for another party in the first and/or
second subsequent elections and then return
to Labour for the third election.

(d) T 4 =

 0.53 0.20 0.26
0.32 0.45 0.23
0.32 0.26 0.42


The probability that a voter who votes Con-
servative in an election votes Other in four
elections time is 0.23 (from cell (2,3)).

5. It’s possible to answer (a) directly from the tran-
sition diagram (the probability of a transition
from B to A is 0.2) and (b) and perhaps (c) could
be answered using a tree diagram, but by far the
simplest approach is to translate the transition
diagram to a transition matrix T :

To
A B C

From

[ ]
A 0.1 0.6 0.3
B 0.2 0.4 0.4
C 0.8 0 0.2

(The transition matrix can also be written with
the columns representing the initial state and the
rows representing the resulting state.)

The probability of the situation being in state
A given that it starts in state B is found in cell
(2, 1)

(a) p = 0.2

(b) T 2 =

 0.37 0.30 0.33
0.42 0.28 0.30
0.24 0.48 0.28


p = 0.42

(c) T 3 =

 0.361 0.342 0.297
0.338 0.364 0.298
0.344 0.336 0.320


p = 0.338

(d) T 5 =

 0.348 0.347 0.305
0.349 0.346 0.304
0.345 0.351 0.304


p = 0.349

(e) T 10 =

 0.348 0.348 0.304
0.348 0.348 0.304
0.348 0.348 0.304


p = 0.348

6. The transition diagram translates to the follow-
ing transition matrix T :

From
P Q R

To

[ ]
P 0.2 0.4 0.1
Q 0.8 0 0.9
R 0 0.6 0

After starting in state R, the probability of being
in state P is found in cell (1, 3), the probability
of being in state Q is in cell (2, 3) and the prob-
ability of being in state R is in (3, 3).

(a) p(P) = 0.1

(b) T 2 =

 0.36 0.14 0.38
0.16 0.86 0.08
0.48 0 0.54


p(Q) = 0.08

(c) T 3 =

 0.184 0.372 0.162
0.720 0.112 0.790
0.096 0.516 0.048


p(R) = 0.048

(d) T 10 =

 0.295 0.224 0.303
0.362 0.590 0.336
0.343 0.186 0.361


p(P) = 0.303

(e) T 20 =

 0.272 0.254 0.274
0.436 0.492 0.429
0.292 0.254 0.297


p(Q) = 0.429
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Exercise 5B

1. Transition matrix T :
From

City now Country now

To

[ ]
City in 5 years 0.95 0.18
Country in 5 years 0.05 0.82

(a) i.

[
0.95 0.18
0.05 0.82

] [
765
511

]
=

[
819
457

]
The model predicts 819 000 will live in
the city and 457 000 in the country in
five years time.

ii.

[
0.95 0.18
0.05 0.82

]2 [
765
511

]
=

[
860
416

]
The model predicts 860 000 will live in
the city and 416 000 in the country in
five years time.

(b) Experiment with increasingly high powers
of T until both columns are equal, to two
decimals:

T 20 =

[
0.78 0.78
0.22 0.22

]
In the long term 78 per cent of the popula-
tion will live in the city and 22 per cent in
the country.

(c) I postmultiplied the transition matrix by
the initial state matrix because of the way
I set up my transition matrix with the
columns representing the ‘From’ state and
the rows representing the ‘To’ state.

2. Transition matrix T :

To
A B

From

[ ]
A 0.98 0.02
B 0.05 0.95

(a)
[

260 138
] [ 0.98 0.02

0.05 0.95

]2
=
[

263 135
]

The model predicts that 263 of the 398 staff,
or 66% will be at A in two years time, with
34% at B.

(b)
[

260 138
] [ 0.98 0.02

0.05 0.95

]5
=
[

267 131
]

The model predicts that 267 of the 398 staff,
or 67% will be at A in five years time, with
33% at B.

(c) Experiment with increasingly high powers
of T until both rows are equal, to two deci-
mals:

T 100 =

[
0.71 0.29
0.71 0.29

]
and conclude that the long term expecta-
tion is that 71% will be at A and 29% at
B.

Alternatively, if an exact value is required
solve the steady state equation

[
a 1− a

] [ 0.98 0.02
0.05 0.95

]
=
[
a 1− a

]
[

0.98a+ 0.05(1− a) 0.02a+ 0.95(1− a)
]

=
[
a 1− a

]
equating the first elements,
0.98a+ 0.05(1− a) = a

0.05− 0.05a = 0.02a

0.07a = 0.05

a =
5

7
≈ 0.71

similarly the second elements
0.02a+ 0.95(1− a) = 1− a

0.02a = 0.05(1− a)

0.07a = 0.05

a =
5

7
≈ 0.71

3. (a) Cell (1, 1): p = 1
2 .

(b)


1
2

1
5

3
10

1
6

1
2

1
3

2
5

1
5

2
5


2

=


121
300

13
50

101
300

3
10

7
20

7
20

59
150

13
50

26
75


Cell (2, 3): p = 7

20

(c) To two decimal places,
1
2

1
5

3
10

1
6

1
2

1
3

2
5

1
5

2
5


5

=

 0.37 0.29 0.34
0.37 0.29 0.34
0.37 0.29 0.34


In the long term, the team expects to win
37%, lose 29% and draw 34%.

4. First present the information as initial matrix I
and transition matrix T :

I =




Tea 52
Coffee 93
Juice 84
No drink 21

T =

Today

Tea Coffee Juice No drink

Next
day




Tea 0.65 0.08 0.04 0.16
Coffee 0.22 0.75 0.08 0.24
Juice 0.09 0.15 0.82 0.25
No drink 0.04 0.02 0.06 0.35

(a) TI =


48
93
93
16


The probabilities suggest 48 tea, 93 coffee,
93 juice and 16 no drink the next day.

(b) T 30 =


0.16 0.16 0.16 0.16
0.34 0.34 0.34 0.34
0.44 0.44 0.44 0.44
0.06 0.06 0.06 0.06
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The probabilities suggest the long term per-
centages are 16% tea, 34% coffee, 44% juice
and 6% no drink.

5. Since the question does not spell out exactly
what “randomly select” means, we must assume
equal probability for each available path. A per-
son at A or D has three available paths so we
assign each the probability of 1

3 while a person
at B or C has only two available paths so we as-
sign each of these the probability of 1

2 . This gives
the transition matrix

T =

To

A B C D

From




A 0 1
3

1
3

1
3

B 1
2 0 1

2 0

C 1
2 0 0 1

2

D 1
3

1
3

1
3 0

[
22 22 22 22

]
T 10 =

[
27 16 24 21

]
[

88 0 0 0
]
T 10 =

[
27 16 24 21

]
[

0 44 0 44
]
T 10 =

[
27 16 24 21

]
etc.

In the long term, after (say) ten moves, it makes
no difference where the 88 people are initially sta-
tioned, they will end up with 27 on A, 16 on B,
24 on C and 21 on D.

(These are, of course, only expected outcomes.
Because of the random nature of the moves the
actual numbers would vary either side of these
expected values.)

6. First complete the transition matrix so each col-
umn totals 1.0: 0.61 0.28 0.19

0.35 0.64 0.72
0.04 0.08 0.09



(a)

 0.61 0.28 0.19
0.35 0.64 0.72
0.04 0.08 0.09

 35
48
12

 =

 37
52
6


The table suggests that 37 will have school,
52 a normal degree and 6 a higher degree as
their highest level of education.

(b)

 0.61 0.28 0.19
0.35 0.64 0.72
0.04 0.08 0.09

6

=

 0.41 0.41 0.41
0.53 0.53 0.53
0.06 0.06 0.06



If the trends continue, in the long term 41%
will have school, 53% a normal degree and
6% a higher degree as their highest level
of education. (However, given the nature
of the data, it might be considered very
unlikely for these trends to continue un-
changed for the several generations needed
for the long-term outcome to be meaningful.
Also note other potential issues with the ex-
perimental design mentioned in Sadler’s an-
swers.)

7. Completing the matrix gives

From

A B C

To




A 1
2

1
3 0

B 1
2

1
3

1
2

C 0 1
3

1
2

For the long-term probabilities,
1
2

1
3 0

1
2

1
3

1
2

0 1
3

1
2


15

=

 0.286 0.286 0.286
0.429 0.429 0.429
0.286 0.286 0.286


p(A) = 0.286; p(B) = 0.429; and p(C) = 0.286.
Intuitively we would expect the probability of
finding the sentry at B to be greater than that
of finding him at A or C, and we would have
expected to find the symmetry with A and C
having equal probability, but we would not have
predicted the actual probabilities intuitively.

8. The transition matrix is

From

X Y Z

To




X 1
3

1
2

2
3

Y 0 1
2

1
3

Z 2
3 0 0

For the long-term probabilities,
1
3

1
2

2
3

0 1
2

1
3

2
3 0 0


15

=

 0.474 0.474 0.474
0.211 0.211 0.211
0.316 0.316 0.316


p(X) = 0.474; p(Y ) = 0.211; and p(Z) = 0.316.

(These probabilities correct to three decimal
places appear to add to 1.001. This is, of course,
simply an artefact of the rounding and we should
not be disconcerted by it.)
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Exercise 5C

1. (a) L2P =


3 888
3 318
1 792

864



L5P =


6 179
4 130
2 977
1 306



L10P =


11 807
7 477
5 196
2 751



L20P =


40 108
24 867
17 607
9 370



L50P =


1 530 091

948 631
672 154
357 192



(b) The product is a 1×1 matrix where the cell
value is the total population.

(c) TL5P =
[

14 593
]

x5 = 14 593

TL6P =
[

17 003
]

x6 = 17 003

TL7P =
[

18 942
]

x7 = 18 942

TL8P =
[

21 335
]

x8 = 21 335

TL9P =
[

24 312
]

x9 = 24 312

TL10P =
[

27 231
]

x10 = 27 231

TL19P =
[

81 436
]

x19 = 81 436

TL20P =
[

91 952
]

x20 = 91 952

TL29P =
[

274 149
]

x29 = 274 149

TL30P =
[

309 534
]

x30 = 309 534

TL39P =
[

922 931
]

x39 = 922 931

TL40P =
[

1 042 047
]

x40 = 1 042 047

TL49P =
[

3 107 062
]

x49 = 3 107 062

TL50P =
[

3 508 068
]

x50 = 3 508 068

(d)
x6
x5

= 1.165

x7
x6

= 1.114

x8
x7

= 1.126

x9
x8

= 1.140

x10
x9

= 1.120

x20
x19

= 1.129

x30
x29

= 1.129

x40
x39

= 1.129

x50
x49

= 1.129

These results suggest a long-term steady
growth rate of 12.9% per generation.

2. (a) The 0.3 is multiplied by the Youngster pop-
ulation and the product contributes to the
Infant population in the next generation:
that is, it is the reproduction rate of Young-
sters.

(b) The 0.9 is multiplied by the Prime popula-
tion and the product gives the Elderly pop-
ulation in the next generation: that is, it is
the survival rate of the Prime population.

(c) P1 =


0 0.3 1.8 0.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.5 0




250
540
620
280
140



=


1420
175
430
560
140


Translate into the terms of the question:

Gen. Infant Youngster Prime Elderly Aged

Pop’n 1420 175 430 560 140

(Note: these are rounded figures.)

(d) P5 =


0 0.3 1.8 0.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.5 0


5 

250
540
620
280
140



=


1630
1210
420
560
360


Gen. Infant Youngster Prime Elderly Aged

Pop’n 1630 1210 420 560 360
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(e) P25 =


0 0.3 1.8 0.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.5 0


25 

250
540
620
280
140



=


20 100
12 300
8 800
6 900
3 000


Gen. Infant Youngster Prime Elderly Aged

Pop’n 20 100 12 300 8 800 6 900 3 000

(f)


0 0.3 1.8 0.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.5 0


10 

250
540
620
280
140

 =


3 100
1 600
1 300
1 100

350


[

1 1 1 1 1
]


3 100
1 600
1 300
1 100

350

 =
[

7600
]

The total population after 20 years (10 gen-
erations) is 7 600 (to the nearest hundred).

3. (a) No working required. Put reproduction
rates in the first row and survival rates (not
death rates!) in the first diagonal below the
prime diagonal.

(b)


0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0


10 

2300
2800
3200
1800

 =


308 000
143 000
76 000
21 000


(rounded to the nearest thousand).

(c) [
1 1 1 1

] 
0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0


25 

2300
2800
3200
1800

 =
[

243 000 000
]

(rounded to the nearest million).

(d) From generation 25 to generation 26 the to-
tal population increases by

364961828

243089970
= 1.5013

From generation 26 to generation 27 the to-
tal population increases by

364961828

243089970
= 1.5013

Since these growth factors are equal to four
decimal places, we can assume that we have
reached the long-term growth rate of 50%
every two years.

(e) I would expect the investigation to proceed
somewhat along these lines:

Initial population:

P0 =


2300
2800
3200
1800



= 101


0.23
0.28
0.32
0.18



Subsequent generations:

P1 =


0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0




2300
2800
3200
1800



=


12060
1610
2240
1280



= 17190


0.70
0.09
0.13
0.07



P2 =


0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0


2 

2300
2800
3200
1800



=


7639
8442
1288
896



= 18256


0.42
0.46
0.07
0.05



P3 =


0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0


3 

2300
2800
3200
1800



=


21696
5347
6754
515



= 34312


0.63
0.16
0.20
0.02



P4 =


0 2.3 1.7 0.1

0.7 0 0 0
0 0.8 0 0
0 0 0.4 0


4 

2300
2800
3200
1800



=


23831
15187
4278
2701



= 45997


0.52
0.33
0.09
0.06



Proceeding in this manner and tabulating
the proportions in each generation gives
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Gen 0 < x < 2 2 ≤ x < 4 4 ≤ x < 6 6 ≤ x < 8

0 0.23 0.28 0.32 0.18
1 0.70 0.09 0.13 0.07
2 0.42 0.46 0.07 0.05
3 0.63 0.16 0.20 0.02
4 0.52 0.33 0.09 0.06
5 0.58 0.23 0.17 0.02
6 0.55 0.28 0.12 0.05
7 0.56 0.26 0.15 0.03
8 0.56 0.26 0.14 0.04
9 0.56 0.26 0.14 0.04
10 0.56 0.26 0.14 0.04
11 0.56 0.26 0.14 0.04
12 0.56 0.26 0.14 0.04

At first the proportions vary wildly, but af-
ter a few generations they begin to settle
down and after 8 generations there is no
change (at least at this level of precision)
from 56% in the youngest age group, 26%
in the second, 14% in the third and 4% in
the oldest.

Exercise 5D

1. (a) L =


0 0 0.8 0.4 0.1

0.5 0 0 0 0
0 0.7 0 0 0
0 0 0.5 0 0
0 0 0 0.2 0



P0 =


350
420
330
140
70


T =

[
1 1 1 1 1

]
TP1 = TLP0

=
[

989
]

TP2 = TL2P0

=
[

770
]

TP2 = TL3P0

=
[

517
]

TP2 = TL4P0

=
[

375
]

TP2 = TL5P0

=
[

289
]

TP2 = TL10P0

=
[

55
]

The total population in 1, 2, 3, 4, 5 and 10
generations time is predicted by the model
to be 989, 770, 517, 375, 289 and 55.

(b) L =


0 0 0.8 0.4 0.1

0.8 0 0 0 0
0 0.9 0 0 0
0 0 0.8 0 0
0 0 0 0.5 0


TP1 = TLP0

=
[

1319
]

TP2 = TL2P0

=
[

1363
]

TP2 = TL3P0

=
[

1256
]

TP2 = TL4P0

=
[

1141
]

TP2 = TL5P0

=
[

1127
]

TP2 = TL10P0

=
[

848
]

The total population in 1, 2, 3, 4, 5 and 10
generations time is predicted by the revised
model to be 1319, 1363, 1256, 1141, 1127
and 848.
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(c) L =


0 0.2 0.9 0.5 0.1

0.8 0 0 0 0
0 0.9 0 0 0
0 0 0.8 0 0
0 0 0 0.5 0


TP1 = TLP0

=
[

1450
]

TP2 = TL2P0

=
[

1588
]

TP2 = TL3P0

=
[

1575
]

TP2 = TL4P0

=
[

1620
]

TP2 = TL5P0

=
[

1736
]

TP2 = TL10P0

=
[

2054
]

The total population in 1, 2, 3, 4, 5 and 10
generations time is predicted by the second
revised model to be 1450, 1588, 1575, 1620,
1736 and 2054.

2. (a) No working required.

(b) No working required.

(c) i.


0 0.5 0.9 1.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.6 0




350
620
750
180
60

 =


1255
245
496
675
108



ii.


0 0.5 0.9 1.5 0

0.7 0 0 0 0
0 0.8 0 0 0
0 0 0.9 0 0
0 0 0 0.6 0


10 

350
620
750
180
60

 =


4082
2597
1695
1246
711


(d) Let the current population figures be repre-

sented by

P0 =


350
620
750
180
60


and let U be given by

U =
[

1 1 1 1 1
]

then the total population after n years is
given by

Pn = ULnP0

i. UL19P0 =
[

39 380
]

ii. UL20P0 =
[

45 714
]

iii. UL29P0 =
[

174 005
]

iv. UL30P0 =
[

201 888
]

(e)
45 714

39 380
≈ 1.16

201 888

174 005
≈ 1.16

The long term annual per-

centage growth rate is about 16%.

(f) 1
1.16 = 0.86 so the annual harvesting rate
should be about 14%.

(g) (0.95L)5P0 =


1699
786
557
617
294

 ≈


1700
800
550
600
300



3. (a) L =


0 0.8 1.6 0.3

0.6 0 0 0
0 0.8 0 0
0 0 0.7 0


(b) Let

P0 =


850
750
600
400


and let

I =
[

1 1 1 1
]

then

i. IL9P0 =
[

7250
]

ii. IL10P0 =
[

8134
]

iii. IL19P0 =
[

21968
]

iv. IL20P0 =
[

24542
]

v. IL29P0 =
[

66558
]

vi. IL30P0 =
[

74359
]

(c)
P10

P9
= 1.122

P20

P19
= 1.119

P30

P29
= 1.117

The data suggests the long term annual
growth rate will be about 12%.

(d)
1

1.117
= 0.895

1− 0.895 = 0.105

The annual harvesting rate should be be-
tween 10% and 11%.

To estimate the long term steady popula-
tion of each year group, consider P30 with
10.5% harvesting:

P30 = (0.895L)
30
P0 =


1230
660
470
300


(answers rounded to the nearest 10.)

(e)

0.95

1.117
= 0.850

1− 0.850 = 0.15

The annual harvesting rate should be about
15%.

P10 = (0.850L)
10
P0 =


740
400
280
180


(answers rounded to the nearest 10.)
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Miscellaneous Exercise 5

1. (a) AB cannot be determined because it would
require the number of columns of A (1) to
equal the number of rows of B (2).

(b) BA =

[
−1× 3 + 2× 1
1× 3 + 4× 1

]
=

[
−1

7

]
(c) BC =

[
−3 3 −3
−3 3 −3

]
(d) CD cannot be determined because it would

require the number of columns of C (3) to
equal the number of rows of D (2).

(e) BD =

[
0 1 2
6 5 4

]
2. (a) AB =

[
1× 2− 2× 0 + 2×−1

]
=
[

0
]

(b) BA =

 2× 1 2×−2 2× 2
0× 1 0×−2 0× 2
−1× 1 −1×−2 −1× 2


=

 2 −4 4
0 0 0
−1 2 −2


3. AC = B

A−1AC = A−1B

IC = A−1B

C = A−1B

=
1

2× 4− 2×−1

[
4 −3
1 2

] [
4 21
9 17

]
=

1

11

[
16− 27 84− 51
4 + 18 21 + 34

]
=

1

11

[
−11 33

22 55

]
=

[
−1 3

2 5

]
4. (a) XY (2×2)(2×1) and ZX (1×2)(2×2) can be

formed since these have the correct match
of the number of columns in the first matrix
with the number of rows in the second.

(b) XY does not make sense. Consider the cal-
culation of the value in the first cell: (No.
of Aus stamps in the Mainly Aus pack ×
No. of Mainly Aus packs) + (No. of World
stamps in the Mainly Aus pack × No. of
Rest of World packs). Although the first
term makes sense (giving the total number
of Aus stamps in the Mainly Aus pack), the
second term makes no sense since it multi-
plies two unrelated quantities.

ZX does make sense. Consider again the cal-
culation of the value in the first cell: (No.
of Aus stamps in the Mainly Aus pack ×
No. of Mainly Aus packs) + (No. of Aus

stamps in the Rest of World pack × No.
of Rest of World packs). The two terms
here give the total number of Aus stamps
in the Mainly Aus pack and the total num-
ber of Aus stamps in the Rest of World pack,
and their sum gives the total number of Aus
stamps required. Similarly the value in the
second cell gives the total number of Rest
of World stamps required.

(c) ZX =
[

210 120
] [ 75 25

20 80

]
=
[

18150 14850
]

18150 Australian stamps and 14850 Rest of
World stamps will be required in order to
supply the requests.

5. From matrix element (1,1):

45− x2 = 4x

x2 + 4x− 45 = 0

From matrix element (2,2):

6x− 5 = x2

x2 − 6x+ 5 = 0

Combining these:

x2 + 4x− 45 = x2 − 6x+ 5

10x = 50

x = 5

Similarly, from matrix element (1,2):

y2 − y = 4− y
y2 − 4 = 0

From matrix element (2,1):

y2 + 5y = −6

y2 − 5y + 6 = 0

Combining these:

y2 − 4 = y2 − 5y + 6

−5y = −10

y = 2
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6.
dy

dx
=

6x(x− 2)

2y − 3∫
(2y − 3)dy =

∫
(6x(x− 2)) dx

=

∫ (
6x2 − 12x)

)
dx

at (3, 4): y2 − 3y = 2x3 − 6x2 + c

(4)2 − 3(4) = 2(3)3 − 6(3)2 + c

16− 12 = 54− 54 + c

c = 4

y2 − 3y = 2x3 − 6x2 + 4

given x = 1, y2 − 3y = 2(1)3 − 6(1)2 + 4

= 2− 6 + 4

= 0

y(y − 3) = 0

y = 0

or y = 3

7. (a) T =

[
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
=

[
0 −1
1 0

]
|det(T)| = |0× 0− (−1)× 1|

= 1

(b) T =

[
cos(180◦) − sin(180◦)
sin(180◦) cos(180◦)

]
=

[
−1 0

0 −1

]
|det(T)| = |−1×−1− 0× 0|

= 1

(c) T =

[
1 0
0 −1

]
|det(T)| = |1×−1− 0× 0|

= 1

(d) T =

[
0 1
1 0

]
|det(T)| = |0× 0− 1× 1|

= 1

(e) T =

[
1 4
0 1

]
|det(T)| = |1× 1− 4× 0|

= 1

(f) T =

[
1 0
3 1

]
|det(T)| = |1× 1− 0× 3|

= 1

8. A2 =

[
x 1
0 3

] [
x 1
0 3

]
=

[
x2 x+ 3
0 9

]
A2 + A =

[
x2 x+ 3
0 9

]
+

[
x 1
0 3

]
=

[
x2 + x x+ 4

0 12

]
A2 + A =

[
6 x2 − 8
p q

]
∴

[
x2 + x x+ 4

0 12

]
=

[
6 x2 − 8
p q

]
From element (2, 1), p = 0.

From element (2, 2), q = 12.

From element (1, 1),

x2 + x = 6

x2 + x− 6 = 0

and from element (1, 2):

x+ 4 = x2 − 8

x2 − x− 12 = 0

so x2 + x− 6 = x2 − x− 12

2x = −6

x = −3

9. (a) AB =

[
−5− 9 0− 6
1 + 3 0 + 2

]
=

[
−14 −6

4 2

]
(b) BA =

[
−5 + 0 3 + 0
15− 2 −9 + 2

]
=

[
−5 3
13 −7

]
(c) A−1 =

1

5− 3

[
1 3
1 5

]
=

1

2

[
1 3
1 5

]
(d) B−1 =

1

−2− 0

[
2 0
−3 −1

]
=

1

2

[
−2 0

3 1

]
(e) AC = B

C = A−1B

=
1

2

[
1 3
1 5

] [
−1 0

3 2

]
=

1

2

[
−1 + 9 0 + 6
−1 + 15 0 + 10

]
=

1

2

[
8 6

14 10

]
=

[
4 3
7 5

]
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(f) DA = B

D = BA−1

=

[
−1 0

3 2

]
1

2

[
1 3
1 5

]
=

1

2

[
−1 + 0 −3 + 0

3 + 2 9 + 10

]
=

1

2

[
−1 −3

5 19

]
Note: the solution in Sadler is incorrectly
missing the 1

2 .

10. AA−1 = I a −1 a
b 3 c
d 1 −1

 −3 e f
1 0 g
4 −1 7

 =

 1 0 0
0 1 0
0 0 1


 −3a− 1 + 4a ae+ 0− a af − g + 7a
−3b+ 3 + 4c be+ 0− c bf + 3g + 7c
−3d+ 1− 4 de+ 0 + 1 df + g − 7

 =

 1 0 0
0 1 0
0 0 1


From matrix element (3,1),

−3d− 3 = 0

d = −1 a− 1 ae− a af − g + 7a
−3b+ 3 + 4c be− c bf + 3g + 7c

0 −e+ 1 −f + g − 7

 =

 1 0 0
0 1 0
0 0 1


Now from element (3,2),

−e+ 1 = 0

e = 1 a− 1 0 af − g + 7a
−3b+ 3 + 4c b− c bf + 3g + 7c

0 0 −f + g − 7

 =

 1 0 0
0 1 0
0 0 1


Now from element (1,1),

a− 1 = 1

a = 2 1 0 2f − g + 14
−3b+ 3 + 4c b− c bf + 3g + 7c

0 0 −f + g − 7

 =

 1 0 0
0 1 0
0 0 1


Now from element (2,2),

b− c = 1

c = b− 1 1 0 2f − g + 14
−3b+ 3 + 4(b− 1) 1 bf + 3g + 7(b− 1)

0 0 −f + g − 7

 =

 1 0 0
0 1 0
0 0 1


Now from element (2,1),

−3b+ 3 + 4(b− 1) = 0

b− 1 = 0

b = 1

hence c = b− 1

c = 0 1 0 2f − g + 14
0 1 f + 3g
0 0 −f + g − 7

 =

 1 0 0
0 1 0
0 0 1


Now from elements (2,3) and (3,2),

f + 3g = 0

−f + g − 7 = 1

−f + g = 8

4g = 8

g = 2

−f + 2 = 8

f = −6

Check that this works for the remaining element:
2(−6)− 2 + 14 = 0 is correct.

Therefore, a = 2, b = 1, c = 0, d = −1, e = 1,
f = −6 and g = 2.

11. Let the transition matrix T be defined as
Received by

P M T

Thrown
by




Phillipe 0 0.6 0.4

Marlon 0.5 0 0.5

Tony 0.7 0.3 0

There are two ways we can find the long term
percentage of passes each will receive. (Note that
the percentage of passes each receives is equal to
the percentage throws each gives and equal to the
percentage each has possession of the ball.)

First, empirically. Suppose (without loss of gen-
erality) that Phillipe starts with the ball. This
gives us an initial state matrix

S0 =
[

1 0 0
]

Now after n passes, the probability of each hav-
ing the ball is given by

Sn = S0Tn

Calculate this for increasingly large values of n
until there is no significant change and interpret
the results.

After 20 throws,

S0T20 =
[

0.374 0.317 0.308
]

Phillipe received 37% of passes, Marlon 32% and
Tony 31%.

The more analytical approach is to find the state
matrix S such that ST = S, that is

[
p m t

]  0 0.6 0.4
0.5 0 0.5
0.7 0.3 0

 =
[
p m t

]
[

0.5m+ 0.7t 0.6p+ 0.3t 0.4p+ 0.5m
]

=
[
p m t

]
−p+ 0.5m+ 0.7t = 0

0.6p−m+ 0.3t = 0

0.4p+ 0.5m− t = 0

Solve any two of these simultaneously together
with

p+m+ t = 1

to give the same answers as we found empirically.
This second approach can be used to find exact
values, but this is seldom of relevance with pro-
cesses that are probabilistic in nature.
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12.
27

i
= −27i

= 27 cis(−π
2

)

This gives us a principal solution of

z = 3 cis(−π
6

)

The three solutions are separated by 2π
3 so the

other two solutions are

z = 3 cis(−π
6
− 2π

3
) = 3 cis(−5π

6
)

and

z = 3 cis(−π
6

+
2π

3
) = 3 cis(

π

2
)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Re

Im

3cis(π2 )

3cis(− 5π
6 ) 3cis(−π6 )

13. (a) The Leslie matrix is

L =

 0 1.2 0.9
0.6 0 0

0 0.8 0


If P is the population vector from the pre-
vious year and Q is the current population,
then

Q =

 2778
1572
1192


LP = Q

L−1LP = L−1Q

P =

 2620
1490
1100


(using calculator for the last step).

Alternatively, we can simply work back-
ward. Second generation population is
given by the survival from the previous
year’s first generation: q2 = 0.6p1 so p1 =
q2
0.6 = 1572

0.6 = 2620.

Similarly third generation population is
given by the survival from the previous

year’s second generation: q3 = 0.8p2 so
p2 = q3

0.8 = 1192
0.8 = 1490.

The first generation population is given by
the reproduction rates from the previous
year:

q1 = 1.2p2 + 0.9p3

p3 =
q1 − 1.2p2

0.9

=
2778− 1.2× 1490

0.9
= 1100

(b) The Leslie matrix becomes

L =

 0 1.2 0
0.6 0 0

0 0.8 0


This is not an invertable matrix so it is not
possible to determine the previous year’s
population.

It is possible to work out the first and sec-
ond generation population by working back-
ward, as previously, but we can tell nothing
about the third generation population.

q2 = 0.6p1 so p1 = q2
0.6 = 1572

0.6 = 2620.

q3 = 0.8p2 so p2 = q3
0.8 = 1852

0.8 = 2315.

The reproduction rate, however, now has
no contribution from p3: q1 = 1.2p2 which
gives p2 = 2315 which is consistent with the
value given by the survival rates, but tells
us nothing about p3.

14. (a)

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

]
=

[ √
3
2 − 1

2
1
2

√
3
2

]

=
1

2

[ √
3 −1

1
√

3

]

(b)

[
cos 60◦ − sin 60◦

sin 60◦ cos 60◦

]
=

[
1
2 −

√
3
2√

3
2

1
2

]

=
1

2

[
1 −

√
3√

3 1

]
(c) The gradient of the line of symmetry gives

tan θ =

√
3

3
θ = 30◦

2θ = 60◦

so the transformation matrix is

[
cos 60◦ sin 60◦

sin 60◦ − cos 60◦

]
=

[
1
2

√
3
2√

3
2 − 1

2

]

=
1

2

[
1
√

3√
3 −1

]
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(d) The transformation matrix representing the
combined reflection and rotation described
is

1

2

[
1
√

3√
3 −1

]
1

2

[ √
3 −1

1
√

3

]
=

1

4

[ √
3 +
√

3 −1 + 3

3− 1 −
√

3−
√

3

]
=

1

2

[ √
3 1

1 −
√

3

]
and this is not equal to the transformation
matrix representing a 60◦ anticlockwise ro-
tation about the origin.

The apparent equivalence in the diagram is
caused by the symmetry of the square. (Re-
fer to the solutions in Sadler for a more full
explanation.)

15.
d

dx
2ex lnx = 2e lnx+ 2ex

1

x
= 2e lnx+ 2e

= 2e(ln(x) + 1)

At the stationary point

2e(ln(x) + 1) = 0

lnx = −1

x = e−1

=
1

e

The second derivative is

d2

dx2
2ex lnx =

d

dx
2e(ln(x) + 1)

=
2e

x

and at x =
1

e
d2

dx2
2ex lnx = 2e2

which is positive, signifying that the gradient is
increasing, so the stationary point is a minimum.

The minimum value is obtained by substituting
x = 1

e into the original expression:

2e(
1

e
) ln

1

e
= 2 ln e−1

= −2

16.
dy

dx
=

2
x (x2)− 2 lnx(2x)

x4

=
2x− 4x lnx

x4

=
2x(1− 2 lnx)

x4

=
2(1− 2 lnx)

x3

At the stationary points

dy

dx
= 0

2(1− 2 lnx)

x3
= 0

1− 2 lnx = 0

lnx =
1

2

x = e
1
2

=
√
e

y =
2 ln e

1
2

e

=
1

e

There is one stationary point, a maximum at
(
√
e, 1e ).

17. (a) De Moivre’s theorem states that

(cos θ + i sin θ)k = cos kθ + i sin kθ

so given

z = cos θ + i sin θ

zk = cos kθ + i sin kθ

and

1

zk
= z−k

= cos(−kθ) + i sin(−kθ)
= cos kθ − i sin kθ

∴ zk +
1

zk
= cos kθ + i sin kθ

+ cos kθ − i sin kθ

= 2 cos kθ

�

(b) i. To prove:

cos3 θ =
cos(3θ) + 3 cos θ

4

Proof:

LHS = cos3 θ

=

(
z + 1

z

2

)3

=
z3 + 3z + 3

z + 1
z3

8

=
z3 + 1

z3 + 3z + 3
z

8

=

(
z3 + 1

z3

)
+ 3

(
z + 1

z

)
8

=
2 cos(3θ) + 6 cos θ

8

=
cos(3θ) + 3 cos θ

4
= RHS

�
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ii. To prove:

cos4 θ =
cos(4θ) + 4 cos(2θ) + 3

8

Proof:

LHS = cos4 θ

=

(
z + 1

z

2

)4

=
z4 + 4z2 + 6 + 4

z2 + 1
z4

16

=
z4 + 1

z4 + 4z2 + 4
z2 + 6

16

=

(
z4 + 1

z4

)
+ 4

(
z2 + 1

z2

)
+ 6

16

=
2 cos(4θ) + 8 cos(2θ) + 6

16

=
cos(4θ) + 4 cos(2θ) + 3

8
= RHS

�
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Chapter 6

Exercise 6A

1. (a) N = − log10(6.4× 10−8) = 7.19

(b) −N = log10(2L)

10−N = 2L

L =
10−N

2

=
10−9.5

2

= 1.58× 10−10

(Alternatively, use calculator skills to solve
this.)

2. (a) x =
1

log 2
× log

50

20

= 1.32 octaves

(b) 3 =
1

log 2
× log

f2
f1

3 log 2 = log
f2
f1

log 23 = log
f2
f1

8 =
f2
f1

f2 = 8f1

3. (a) 7 = − log(H+)

log(H+) = −7

H+ = 10−7 moles per litre

(b) pH = − log(0.01)

= 2

(c) pH = − log(4× 10−8)

= 7.40

4. (a) logit(0.2) = ln

(
0.2

0.8

)
= −1.39

(b) 4 = ln

(
p

1− p

)
p

1− p
= e4

p = e4 − e4p
p+ e4p = e4

p(1 + e4) = e4

p =
e4

1 + e4

= 0.98

(c) If p is negative, then

p

1− p
< 1

p < 1− p
2p < 1

p < 0.5

which is to say that the event has a less than
even chance of occurring.

(d) ln

(
x

1− x

)
= k

x

1− x
= ek

x = ek(1− x)

= ek + ekx

x+ ekx = ek

x(1 + ek) = ek

x =
ek

1 + ek

For real k, ek > 0. From this we can con-
clude that the value of x is positive, and that
the denominator is greater than the numer-
ator, hence

0 < x < 1 ∀ k ∈ <

5. No working required.

Exercise 6B

1. A = A0e
1.5t

= 100e1.5t

(a) A = 100e1.5 = 488

(b) A = 100e5×1.5 = 180 804 ≈ 181 000

2. P = P0e
0.25t

= 5 000e0.25t

(a) A = 5, 000e0.25×5 = 17 452 ≈ 17 000

(b) A = 5, 000e0.25×25 = 2 590 064 ≈ 2 600 000
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3. A = 500e0.02t

(a) A = 500e0.2 = 611

(b) A = 500e0.5 = 824

4. Q = 100 000e−0.01t

(a) Q = 100 000e−0.2 = 81 873 ≈ 82 000

(b) Q = 100 000e−0.5 = 60 653 ≈ 61 000

5. X = X0e
0.25t

5× 106 = X0e
1

X0 = 1 839 397

X = 1 839 397e0.25t

or alternatively

X = X0e
0.25t

5× 106 = X0e
1

X0 = 5× 106e−1

X = 5× 106e−1e0.25t

= 5× 106e0.25t−1

(a) X = 1 839 397e1.25 = 6 420 127 ≈ 6.4 mil-
lion

(b) X = 5 × 106e6.25−1 = 952 831 342 ≈ 953
million

6. Y = Y0e
0.045t

25 000 = X0e
0.45

X0 = 25 000e−0.45

X = 25 000e0.045t−0.45

(a) X = 25 000e0.9−0.45 = 39 208 ≈ 39 000

(b) X = 25 000e0.045×25−0.45 = 49 101 ≈ 49 000

7.
dA

dt
= −0.08A

A = A0e
−0.08t

= 5e−0.08×25

= 5e−2

= 0.677kg

8.
dA

dt
= −0.02A

A = A0e
−0.02t

= 20e−0.02×50

= 20e−1

= 7.36kg

9.
dP

dt
= 0.025P

P = P0e
0.025t

(a) P = 25e0.25 ≈ 32 million.

(b) i. t = 2030− 1995 = 35

P = 25e0.025×35 ≈ 60 million

ii. t = 2060− 1995 = 65

P = 25e0.025×65 ≈ 127 million

10. (a) P = 100e−0.005 = 99.5%

(b) P = 100e−0.05 = 95%

(c) P = 100e−0.5 = 61%

(d) 50 = 100e−0.005t

e−0.005t = 0.5

−0.005t = ln 0.5

t =
ln 0.5

−0.005

= 138.6

The element has a half life of about 140
years.

11. 0.5A0 = A0e
−0.001t

e−0.001t = 0.5

e0.001t = 2

0.001t = ln 2

t = 1000 ln 2

= 693

The element has a half life of about 690 years.

12. 0.0008t = ln 2

t =
ln 2

0.0008
= 866

The element has a half life of about 870 years.

(After a few of these half-life problems, the pat-
tern becomes clear and we can take some short-
cuts.)

13. 200 = 75e0.035t

e0.035t =
200

75

0.035t = ln
200

75

t =
ln 200

75

0.035
= 28.02

Population will reach 200 million in approxi-
mately 28 years.

14. t =
ln 2

0.0004
= 1733 years

15. t =
ln 2

0.009
= 77 years

16. (a) No calculations are needed (based on the
definition of half-life, half the 20kg must be
left after one half-life.)

(b) This is similarly straightforward. 100 years
is twice the half-life, so the amount has
halved twice to 5kg.
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(c) From the definition of half life,

e−50k = 0.5

∴ 20e−75k = 20e−50k×1.5

= 20× 0.51.5

= 7.07 kg

17. P = 500e1.5t or t =
ln( P

500 )
1.5

(a) t =
ln
(
1 000 000

500

)
1.5

=
ln(2 000)

1.5
= 5.07 hours

= 5 hours 4 minutes

(b) t =
ln
(
2 000 000

500

)
1.5

=
ln(4 000)

1.5
= 5.53 hours

= 5 hours 32 minutes

The doubling time is the difference between the
answers to (a) and (b), i.e. 28 minutes.

18. (a) Based on the half-life, 500g will remain after
30 years.

(b) This is two half lives, so the amount remain-
ing will be

1000
(
1
2

)2
= 250 g

(c) This is 4
3 half lives, so the amount remaining

will be

1000

(
1

2

) 4
3

= 397 g

19. M = M0e
−kt

M

M0
= e−kt

e−250 000k = 0.5

M

M0
= e−250 000k× t

250 000

=
(
e−250 000k

) t
250 000

= 0.5
t

250 000

= 0.5
5 000

250 000

= 0.986

98.6% remains after 5 000 years.

20. P = P0e
kt

31 250 000 = 18 500 000e15k

k =
ln 31 250 000

18 500 000

15
= 0.0349

The growth rate about is 3.5% per annum.

21. P = P0e
kt

56 = 325e8k

k =
ln 56

325

8
= −0.220

Population declined by about 22% per annum.

22. P8 = P0e
kt

1250 = 200e8k

k =
ln 1250

200

8

= 0.229P12 = 200e12k

= 3125

23. e5k = 2

k =
ln 2

5
= 0.139

The claim amounts to a 13.9%p.a. interest rate,
compounding continuously.

24.
P

P0
= e−0.022t

0.6 = e−0.022t

t =
ln(0.6)

−0.022

= 23.22

A top-up dose will be required after 23 minutes.

25.
C

C0
= ekt

0.5 = e5700k

k =
ln 0.5

5700
= −0.0001216

0.6 = ekt

t =
ln 0.6

k
≈ 4 200 years

26.
M

M0
= ekt

0.5 = e30k

k =
ln(0.5)

30
= −0.0231

1

15
= ekt

t =
ln 1

15

k
= 117.2

The area should be considered unsafe for 118
years. (It becomes ’safe’ a couple of months into
the 118th year. In this situation it makes sense
to round answers up rather than to the nearest
year.)
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27. (a) 2 = e
p

100 t

t =
ln 2
p

100

=
100 ln 2

p

100 ln 2 ≈ 69.3

∴ t ≈ 69.3

p

(b) Because 72 is a multiple of 2, 3, 4, 6, 8, 9,
12 and 18. This makes it easy to divide by
common interest rates and this ease of cal-
culation is important in a rule of thumb.

28.
dT

dt
= −k(T − 28)∫

dT

T − 28
= −k

∫
dt

ln(T − 28) = −kt+ c

when t = 0

c = ln(T0 − 28)

ec = T0 − 28

∴ T − 28 = e−kt+c

= ece−kt

= (T0 − 28)e−kt

T = (T0 − 28)e−kt + 28

Let t = 0 represent the time the object was first
placed. Let t = x be the time of the first mea-
surement of 135◦C. The time of the second mea-
surement of 91◦C is then t = x+ 10.

135− 28 = (240− 28)e−kx

107 = 212e−kx

91− 28 = (240− 28)e−k(x+10)

63 = 212e−kx−10k

63 = 212e−kxe−10k

63 = 107e−10k

e−10k =
63

107

k =
ln 63

107

−10

= 0.0530

e−kx =
107

212

x =
ln 107

212

−k
= 12.91 minutes

The item was in the 28◦C environment for about
13 minutes before the 135◦C temperature was
recorded.

Exercise 6C

1. With the product rule:

y = x3(2x+ 1)5

dy

dx
= 3x2(2x+ 1)5 + x3(5)(2x+ 1)4(2)

= 3x2(2x+ 1)5 + 10x3(2x+ 1)4

= x2(2x+ 1)4(3(2x+ 1) + 10x)

= x2(2x+ 1)4(6x+ 3 + 10x)

= x2(2x+ 1)4(16x+ 3)

Using logarithmic differentiation:

y = x3(2x+ 1)5

ln y = ln(x3(2x+ 1)5)

= ln(x3) + ln((2x+ 1)5)

= 3 ln(x) + 5 ln(2x+ 1)

1

y

dy

dx
=

3

x
+

5× 2

2x+ 1

dy

dx
= y

(
3

x
+

10

2x+ 1

)
= y

(
3(2x+ 1) + 10x

x(2x+ 1)

)
= (x3(2x+ 1)5)

(
16x+ 3

x(2x+ 1)

)
= x2(2x+ 1)4(16x+ 3)
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2. With the chain rule:

y = (3x2 − 2)5

= u5

dy

dx
=

dy

du

du

dx

= 5u4(6x)

= 30xu4

= 30x(3x2 − 2)4

Using logarithmic differentiation:

y = (3x2 − 2)5

ln y = ln((3x2 − 2)5)

= 5 ln(3x2 − 2)

1

y

dy

dx
=

5

3x2 − 2
6x

=
30x

3x2 − 2
dy

dx
=

30xy

3x2 − 2

=
30x(3x2 − 2)5

3x2 − 2

= 30x(3x2 − 2)4

3. With the quotient rule:

y =
x3

x2 + 1

dy

dx
=

3x2(x2 + 1)− x3(2x)

(x2 + 1)2

=
3x4 + 3x2 − 2x4

(x2 + 1)2

=
x4 + 3x2

(x2 + 1)2

Using logarithmic differentiation:

y =
x3

x2 + 1

ln y = ln
x3

x2 + 1

= ln(x3)− ln(x2 + 1)

= 3 ln(x)− ln(x2 + 1)

1

y

dy

dx
=

3

x
− 2x

x2 + 1

=
3(x2 + 1)− 2x2

x(x2 + 1)

=
3x2 + 3− 2x2

x(x2 + 1)

=
x2 + 3

x(x2 + 1)

dy

dx
= y

(
x2 + 3

x(x2 + 1)

)
=

x3

x2 + 1

(
x2 + 3

x(x2 + 1)

)

=
x2(x2 + 3)

(x2 + 1)2

=
x4 + 3x2

(x2 + 1)2

4. (a) y = xx

ln y = x lnx

1

y

dy

dx
= ln(x) +

x

x

= ln(x) + 1

dy

dx
= y(ln(x) + 1)

= xx(ln(x) + 1)

(b) y = x2x

ln y = 2x lnx

1

y

dy

dx
= 2 ln(x) +

2x

x

= 2 ln(x) + 2

= 2(ln(x) + 1)

dy

dx
= 2y(ln(x) + 1)

= 2x2x(ln(x) + 1)

(c) y = xcos x

ln y = cos(x) lnx

1

y

dy

dx
= − sin(x) ln(x) +

cos(x)

x

=
cos(x)− x sin(x) ln(x)

x
dy

dx
=
y(cos(x)− x sin(x) ln(x))

x

dy

dx
=
xcos(x)(cos(x)− x sin(x) ln(x))

x

= xcos(x)−1(cos(x)− x sin(x) ln(x))

(d) y = xsin x

ln y = sin(x) lnx

1

y

dy

dx
= cos(x) ln(x) +

sin(x)

x

=
x cos(x) ln(x) + sin(x)

x
dy

dx
=
y(x cos(x) ln(x) + sin(x))

x

dy

dx
=
xsin(x)(x cos(x) ln(x) + sin(x))

x

= xsin(x)−1(x cos(x)ln(x) + sin(x))
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(e) y =

√
3x+ 1

3x− 1

ln y =
1

2
(ln(3x+ 1)− ln(3x− 1))

1

y

dy

dx
=

1

2

(
3

3x+ 1
− 3

3x− 1

)
=

3

2

(
1

3x+ 1
− 1

3x− 1

)
=

3

2

(
(3x− 1)− (3x+ 1)

(3x+ 1)(3x− 1)

)
=

3

2

(
−2

(3x+ 1)(3x− 1)

)
=

−3

(3x+ 1)(3x− 1)

dy

dx
= y

(
−3

(3x+ 1)(3x− 1)

)
=

√
3x+ 1

3x− 1

(
−3

(3x+ 1)(3x− 1)

)
=

−3
√

3x+ 1

(3x+ 1)(3x− 1)
√

3x− 1

=
−3
√

(3x+ 1)(3x− 1)

(3x+ 1)(3x− 1)2

= −3(3x+ 1)−0.5(3x− 1)−1.5

(f) y =

√
1 + x

2− x

ln y =
1

2
(ln(1 + x)− ln(2− x))

1

y

dy

dx
=

1

2

(
1

1 + x
− −1

2− x

)
=

1

2

(
(2− x) + (1 + x)

(1 + x)(2− x)

)
=

3

2(1 + x)(2− x)

dy

dx
= y

(
3

2(1 + x)(2− x)

)
=

√
1 + x

2− x

(
3

2(1 + x)(2− x)

)
= 1.5(1 + x)−0.5(2− x)−1.5

Miscellaneous Exercise 6

1. (a) No working needed.

(b) No working needed.

(c)
dy

dx
=

2(x+ 3)− (2x− 1)

(x+ 3)2

=
2x+ 6− 2x+ 1

(x+ 3)2

=
7

(x+ 3)2

(d) No working needed.

(e) No working needed.

(f)
dy

dx
= 2 cos(x)(− sinx)

= −2 cosx sinx

= − sin 2x

(g) No working needed.

(h) No working needed.

(i) No working needed.

(j) y = x(sin2 x+ cos2 x)

= x

dy

dx
= 1

(k) No working needed.

(l)
dy

dx
= esin x + xesin x(cosx)

= esin x(1 + x cosx)

(m)
1

y

dy

dx
= 6x

dy

dx
= 6xy

(n) 4y + 4x
dy

dx
+ 5y4

dy

dx
− 15 = 8 cos 2x

dy

dx
(4x+ 5y4) = 8 cos(2x)− 4y + 15

dy

dx
=

8 cos(2x)− 4y + 15

4x+ 5y4

(o)
dy

dt
= 4t3

dx

dt
= 2t− 3

dy

dx
=

dy

dt

dt

dx

=
4t3

2t− 3

56



Unit 3D Specialist Mathematics Miscellaneous Exercise 6

(p)
dy

dt
= 15 cos 5t

dx

dt
= 2 cos t

dy

dx
=

dy

dt

dt

dx

=
15 cos 5t

2 cos t

2. ekt =
N

N0

e5k = 2

5k = ln 2

k = 0.2 ln 2

≈ 0.139

3. For any matrices X and Y, for XY to be a possible
product, we need columns(X)=rows(Y). Thus

(a) AB is possible (1 = 1)

(b) AC is not possible (1 6= 2)

(c) BC is possible (2 = 2)

(d) CB is not possible (2 6= 1)

(e) BD is possible (2 = 2)

(f) CD is possible (2 = 2)

(g) AD is not possible (1 6= 2)

(h) DA is possible (3 = 3)

4. (a) AB =

[
5 + 0 −5 + 9
−2 + 0 2− 3

]
=

[
5 4
−2 −1

]
(b) det A = (5)(−1)− (3)(−2)

= 1

(c) A−1 =
1

det A

[
−1 −3

2 5

]
=

[
−1 −3

2 5

]
(d) B−1 =

1

(1)(3)− (−1)(0)

[
3 1
0 1

]
=

[
1 1

3
0 1

3

]
(e) C = A−1B

=

[
−1 −3

2 5

] [
1 −1
0 3

]
=

[
−1 + 0 1− 9
2 + 0 −2 + 15

]
=

[
−1 −8

2 13

]
(f) D = BA−1

=

[
1 −1
0 3

] [
−1 −3

2 5

]
=

[
−1− 2 −3− 5
0 + 6 0 + 15

]
=

[
−3 −8

6 15

]

5. (a) No working required.

(b) T

[
2 1
1 −1

]
=

[
5 4
3 0

]
T =

[
5 4
3 0

] [
2 1
1 −1

]−1
=

[
5 4
3 0

]
1

−3

[
−1 −1
−1 2

]
=

1

3

[
5 4
3 0

] [
1 1
1 −2

]
=

1

3

[
5 + 4 5− 8
3 + 0 3 + 0

]
=

1

3

[
9 −3
3 3

]
=

[
3 −1
1 1

]
6. PQ = R

P = RQ−1

=

 6 1 4
7 5 3
−3 3 −3

 1 0 1
2 −1 1
1 2 0

−1

=

 3 1 1
2 1 3
−2 −1 1


7. (a) No working required.

(b) No working required.

8. (a)

[
4
1

] [
−3, 5

]
=

[
−12 20
−3 5

]
(b)

[
−3, 5

] [ 4
1

]
=
[
−12 + 5

]
=
[
−7

]
9. • AB is not possible (A has 1 column; B has

2 rows)

• AC is possible (columns(A)=rows(C)=1)
and has size rows(A)×columns(C)= (3× 4)

• BA is possible (columns(B)=rows(A)=3
and has size rows(B)×columns(A)= (2× 1)

• BC is not possible (B has 3 columns; C has
1 row)

• CA is not possible (C has 4 columns; A has
3 rows)

• CB is not possible (C has 4 columns; B has
2 rows)

Thus A can pre-multiply C and B can pre-
multiply A so BAC is a possible product and has
dimensions rows(B)×columns(C)= (2× 4).

BAC =

[
2 0 1
−1 3 2

] 3
1
4

 [ 1 0 1 1
]

=

[
10
8

] [
1 0 1 1

]
=

[
10 0 10 10
8 0 8 8

]
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10. AB = BA[
3 0
0 1

] [
x y
0 z

]
=

[
x y
0 z

] [
3 0
0 1

]
[

3x 3y
0 z

]
=

[
3x y
0 z

]

This gives us no restriction on x or z (since
3x = 3x is true for all x, and z = z for all z),
but y must be zero (since 3y = y is only true for
y = 0).

11. M−1 =
1

2

[
a 1
−2 0

]
M−1M−1 =

1

2

[
a 1
−2 0

]
1

2

[
a 1
−2 0

]
=

1

4

[
a2 − 2 a
−2a −2

]
∴

[
b 1
c d

]
=

1

4

[
a2 − 2 a
−2a −2

]
[

4b 4
4c 4d

]
=

[
a2 − 2 a
−2a −2

]
∴ a = 4

∴

[
4b 4
4c 4d

]
=

[
14 4
−8 −2

]
b =

14

4
=

7

2
c = −2

d = −2

4
= −1

2

12. Without loss of generality, consider just one
point:

P′ =

[
1 5
0 1

]
P

P′′ =

[
0 1
1 0

]
P′

=

[
0 1
1 0

] [
1 5
0 1

]
P

=

[
0 1
1 5

]
P

Thus the single matrix is

[
0 1
1 5

]

13.

[
2x x

4 y

]2
=

[
24 p
0 q

]
[

2x x
4 y

] [
2x x

4 y

]
=

[
24 p
0 q

]
[

4x2 + 4x 2x2 + xy
8x+ 4y 4x+ y2

]
=

[
24 p
0 q

]
4x2 + 4x = 24

4x2 + 4x− 24 = 0

x2 + x− 6 = 0

(x+ 3)(x− 2) = 0

x = −3

or x = 2

for x = −3 :[
4(−3)2 + 4(−3) 2(−3)2 + (−3)y

8(−3) + 4y 4(−3) + y2

]
=

[
24 p
0 q

]
[

24 18− 3y
4y − 24 y2 − 12

]
=

[
24 p
0 q

]
4y − 24 = 0

y − 6 = 0

y = 6[
24 18− 3(6)

4(6)− 24 (6)2 − 12

]
=

[
24 p
0 q

]
[

24 0
0 24

]
=

[
24 p
0 q

]
p = 0

q = 24

for x = 2 :[
4(2)2 + 4(2) 2(2)2 + (2)y

8(2) + 4y 4(2) + y2

]
=

[
24 p
0 q

]
[

24 8 + 2y
16 + 4y 8 + y2

]
=

[
24 p
0 q

]
16 + 4y = 0

4 + y = 0

y = −4[
24 8 + 2(−4)

16 + 4(−4) 8 + (−4)2

]
=

[
24 p
0 q

]
[

24 0
0 24

]
=

[
24 p
0 q

]
p = 0

q = 24

Thus p = 0 and q = 24 and (x, y) ∈
{(−3, 6), (2,−4)}

14. (a) A2 = BCB−1BCB−1

= BCCB−1

= BC2B−1

(b) A3 = A2A

= BC2B−1BCB−1

= BC2CB−1

= BC3B−1

(c) An = BCnB−1

(You should be able to see how you could
use mathematical induction to prove this
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quite simply.)

15. L =


0 1.7 2.8 0.2

0.4 0 0 0
0 0.6 0 0
0 0 0.5 0



P0 =


1020
1560
1100
540


(a) P6 = L3P0

=


4750
1370
1402
122


There will be about 122 4th generation fe-
males in 6 years.

(b) P10 = L5P0

=


5672
2511
1140
411


There will be about 2511 2nd generation fe-
males in 10 years.

16. To prove: 2n−1 + 32n+1 is a multiple of 7 for all
integer n, n ≥ 1.

For n = 1,

2n−1 + 32n+1 = 21−1 + 32(1)+1

= 20 + 33

= 28

= 7× 4

Assume the proposition is true for n = k, i.e.

2k−1 + 32k+1 = 7a

for some integer a.

Then for n = k+ 1 we need to demonstrate that

2k+1−1 + 32(k+1)+1 = 2k + 32k+3

is a multiple of 7.

2k + 32k+3 = 2(2k−1) + 9(32k+1)

= 2(2k−1) + (2 + 7)(32k+1)

= 2(2k−1) + 2(32k+1) + 7(32k+1)

= 2(2k−1 + 32k+1) + 7(32k+1)

= 2(7a) + 7(32k+1)

= 7(2a+ 32k+1)

which is a multiple of 7 as required.

Therefore, by mathematical induction 2n−1 +
32n+1 is a multiple of 7 for all integer n, n ≥
1. �

17.
dy

dx
= 0

4x− 1

x
= 0

4x2 − 1 = 0

x2 =
1

4

x =
1

2

y = 2(
1

2
)2 − loge

1

2

=
1

2
+ loge 2

d2y

dx2
= 4 +

1

x2

at x =
1

2
,

d2y

dx2
= 8

d2y
dx2 > 0 =⇒ dy

dx is increasing so the stationary
point at ( 1

2 ,
1
2 + loge 2) is a minimum.

18. (a)
P

P0
= e0.1t

t = 10 ln
P

P0

= 10 ln 2

≈ 6.93 years

≈ 6 years 11 months.

(b) t = 10 ln
40 000

10 000
= 10 ln 4

≈ 13.86 years

≈ 13 years 10 months.

(c) t = 10 ln
80 000

10 000
= 10 ln 8

≈ 20.79 years

≈ 20 years 10 months.

Note that the answer to (b) is double the answer
to (a) since the principal has to double twice.
Similarly, the answer to (c) is three times the an-
swer to (a) since the principle has to double three
times (8 = 23).

19.
dN

dt
= −0.18N

N0 = 12000

N = N0e
−0.18t

e−0.18t =
2 000

12 000

−0.18t = ln
1

6
0.18t = ln 6

t =
ln 6

0.18
≈ 9.95

The critical situation will occur in about 10 years
time.
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20. (a) No working required.

(b) i.
[

5 465 2 535
] [ 0.98 0.02

0.03 0.97

]
=
[

5 402 2 568
]

(populations shown in thousands).

ii. P

[
0.98 0.02
0.03 0.97

]
=
[

5 465 2 535
]

P =
[

5 465 2 535
] [ 0.98 0.02

0.03 0.97

]−1
=
[

5 469 2 501
]

(populations shown in thousands).

(c)

[
0.98 0.02
0.03 0.97

]10
=

[
0.84 0.16
0.24 0.76

]
[

0.98 0.02
0.03 0.97

]50
=

[
0.63 0.37
0.55 0.45

]
[

0.98 0.02
0.03 0.97

]100
=

[
0.60 0.40
0.60 0.40

]

After about a hundred years, everything else
being equal(!), the population would stabi-
lize with 60% of the total in the city and
40% in the country, i.e.[

5 465 2 535
] [ 0.6 0.4

0.6 0.4

]
=
[

4 782 3 188
]

(Whether or not this makes sense is a dif-
ferent question. Real population modelling
for a city would include calculations like this
but would be much more complex as many
other factors would need to be taken into
consideration. Even then, sensibly forecast-
ing 100 years into the future is well beyond
current capabilities.)
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Chapter 7

Exercise 7A

1. f ′(x) = 3x2 − 5

f ′(5) = 3(5)2 − 5

= 70

δf(x)

δx
≈ f ′(x)

δf(5) ≈ f ′(5)δx

= 70× 0.01

= 0.7

f(5.01)− f(5) = (5.01)3 − 5(5.01)− (5)3 + 5(5)

= 0.701501

2. f ′(x) = 10x+ 2

f ′(10) = 10(10) + 2

= 102

δf(x)

δx
≈ f ′(x)

δf(10) ≈ f ′(10)δx

= 102× 0.1

= 10.2

f(10.1)− f(10) = 5(10.1)2 + 2(10.1)− 5(10)2

− 2(10)

= 10.25

3. f ′(x) = 3 cos 3x

f ′(
π

9
) = 3 cos

π

3
= 1.5

δf(x)

δx
≈ f ′(x)

δf(
π

9
) ≈ f ′(π

9
)δx

= 1.5× 0.01

= 0.015

f(
π

9
+ 0.01)− f(

π

9
) = 0.0146

4. f ′(x) = 30 sin2 5x cos 5x

f ′(
π

5
) = 30 sin2 5π

3
cos

5π

3

= 30

(
−
√

3

2

)2(
1

2

)
= 15

(
3

4

)
= 11.25

δf(
π

3
) ≈ f ′(π

3
)δx

= 11.25× 0.001

= 0.01125

f(
π

3
+ 0.001)− f(

π

3
) = 0.011266

5. The marginal cost is d
dxC(x). As the expressions

given can be easily differentiated, no working is
required.

6. Marginal cost C ′(x) = dC
dx = 10√

x

(a) C ′(25) =
10√
25

= $2 per unit

(b) C ′(100) =
10√
100

= $1 per unit

(c) C ′(400) =
10√
400

= $0.50 per unit

7. Marginal cost is C ′(x) = 750−30x+0.3x2 dollars
per tonne.

(a) C ′(30) = 750− 30(30) + 0.3(30)2

= $120 per tonne

(b) C ′(60) = 750− 30(60) + 0.3(60)2

= $30 per tonne

(c) C ′(100) = 750− 30(100) + 0.3(100)2

= $750 per tonne

8. C ′(x) = x

C ′(10) = $10 per item

It costs approximately an additional $10 to pro-
duce the next item. (It’s only approximate be-
cause δC

δx ≈
dC
dx .)

9. (a) P (2) = R(2)− C(2)

= 850− 446

= $404

(b) P (2)
2 = $202 profit per item
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(c) P (10) = R(10)− C(10)

= 4250− 1150

= $3100

(d) P (10)
10 = $310 profit per item

(e) P ′(x) = R′(x)− C ′(x)

= 425− (200− 60x+ 6x2)

= 225 + 60x− 6x2

At maximum profit,

P ′(x) = 0

225 + 60x− 6x2 = 0

x = 12.9

(ignoring the negative root). Thus, to the
nearest integer, the maximum profit will be
achieved when 13 items are produced. This
profit is

P (13) = R(13)− C(13

= 5525− 2074

= $3451

10. (a) C(x) =

∫
(4x+ 2) dx

= 2x2 + 2x+ c

C(0) = 100

c = 100

C(x) = 2x2 + 2x+ 100

(b) C(x) =

∫
x(3x+ 4) dx

=

∫
(3x2 + 4x) dx

= x3 + 2x2 + c

C(0) = 8000

x = 8000

C(x) = x3 + 2x2 + 8000

(c) C(x) =

∫
20(5x+ sin 2x) dx

= 20

(
5x2

2
− cos 2x

2

)
+ c

= 10
(
5x2 − cos 2x

)
+ c

C(0) = 30

10 (− cos 0) + c = 30

−10 + c = 30

c = 40

C(x) = 10
(
5x2 − cos 2x

)
+ 40

= 10
(
5x2 − cos 2x+ 4

)

(d) C(x) =

∫
4(3x3 + 5 cos2 x) dx

= 3x4 + 10

∫
(2 cos2 x− 1 + 1) dx

= 3x4 + 10

∫
(cos 2x+ 1) dx

= 3x4 + 5 sin 2x+ 10x+ c

C(0) = 100

c = 100

C(x) = 3x4 + 5 sin 2x+ 10x+ 100

11. For a revenue function, it is usually safe to as-
sume R(0) = 0.

(a) R(x) =

∫
500 dx

= 500x

(b) R(x) =

∫
(60− 0.1x) dx

= 60x− 0.05x2

12. (a) N(x) =

∫
40π cos

πt

600
dt

= 24 000 sin
πt

600
+ c

N(0) = 0

c = 0

N(x) = 24 000 sin
πt

600

(b) N(100) = 24 000 sin
100π

600

= 24 000 sin
π

6
= 12 000

(c) N(100)−N(99) = 12 000− 24 000 sin
99π

600
= 12 000− 11 891

= 109
Alternatively estimate using

dN

dt
= 40π cos

100π

600

= 40π cos
π

6

= 20π
√

3

= 108.8

≈ 109
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13. C(x) =

∫
20√
x

dx

= 40
√
x+ c

C(0) = 500

c = 500

C(x) = 40
√
x+ 500

C(100) = 40
√

100 + 500

= $900

C(400) = 40
√

400 + 500

= $1 300

Average cost

(a) for x = 100 is 900
100 = $9 per unit

(b) for x = 400 is 1300
400 = $3.25 per unit

14.

∫ 30

25

(x2 + 10x) dx

=

[
x3

3
+ 5x2

]30
25

= (9000 + 4500)− (5208
1

3
+ 3125)

= 13 500− 8 333
1

3

= 5166
2

3
≈ $5200

15. (a) Note that dV
dt < 0 for t < 4 so∫ 1

0

dV

dt
dt

gives the opposite of the amount drained, so
the integral we need is

−
∫ 1

0

dV

dt
dt = −

∫ 1

0

(5t− 40)dt

=

∫ 1

0

(40− 5t)dt

(b)

∫ 4

3

(40− 5t)dt =

[
40t− 5t2

2

]4
3

= (160− 40)− (120− 22.5)

= 22.5 kL

(c)

∫ 4

0

(40− 5t)dt =

[
40t− 5t2

2

]4
0

= (160− 40)− 0

= 120 kL

16. Let θ be the size in radians of the nominally 60◦

angle. Let h be the height of the triangle. The
area of the triangle is

A =
1

2
8h

= 4h

tan θ =
h

8
h = 8 tan θ

A = 4(8 tan θ)

= 32 tan θ

dA

dθ
=

32

cos2 θ
∆A

∆θ
≈ 32

cos2 θ

∆A ≈ 32

cos2 θ
∆θ

=
32

cos2 60◦

(
π × 0.5

180

)
= 128

( π

360

)
≈ 1.1cm2

Exercise 7B

1. No working required.

2. (a) Initial displacement is x = 5(0)2−2(0)+8 =
8m

(b) Initial distance is |x| = 8m

(c) Initial velocity:

v =
dx

dt
= 10t− 2

dv

dt |t=0
= −2ms−1

(d) Speed at t = 2 is |v||t=2 = 10(2) − 2 =
18ms−1
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(e) Acceleration at t = 5 is

a =
dv

dt

= 10ms−2

3. (a) Initial displacement is x = 0(2(0)+1) = 0m

(b) Initial distance is |x| = 0m

(c) Initial velocity:

v =
dx

dt
= 4t+ 1

dv

dt |t=0
= 1ms−1

(d) Speed at t = 2 is |v||t=2 = 4(2)+1 = 9ms−1

(e) Acceleration at t = 5 is

a =
dv

dt

= 4ms−2

4. (a) Initial displacement is x = 4(0)4 + 3(0) =
0m

(b) Initial distance is |x| = 0m

(c) Initial velocity:

v =
dx

dt

= 12t2 + 3

dv

dt |t=0
= 3ms−1

(d) Speed at t = 2 is |v||t=2 = 12(2)2 + 3 =
51ms−1

(e) Acceleration at t = 5 is

a =
dv

dt
= 24t

a|t=5 = 120ms−2

5. (a) Initial displacement is x = 30− 6(0) = 30m

(b) Initial distance is |x| = 30m

(c) Initial velocity:

v =
dx

dt

= −6ms−1

(d) Speed at t = 2 is |v||t=2 = |(| − 6) = 6ms−1

(e) Acceleration at t = 5 is

a =
dv

dt

= 0ms−2

6. (a) Initial displacement is x = 2(0)3 − 30(0) −
1 = −1m

(b) Initial distance is |x| = 1m

(c) Initial velocity:

v =
dx

dt

= 6t2 − 30

dv

dt |t=0
= −30ms−1

(d) Speed at t = 2 is |v||t=2 = |6(2)2 − 30| =
6ms−1

(e) Acceleration at t = 5 is

a =
dv

dt
= 12t

a|t=5 = 60ms−2

7. (a) Initial displacement is x = (1−4(0))3 = 1m

(b) Initial distance is |x| = 1m

(c) Initial velocity:

v =
dx

dt

= 3(1− 4t)2(−4)

= −12(1− 4t)2

dv

dt |t=0
= −12ms−1

(d) Speed at t = 2 is

|v||t=2 = |−12(1− 4(2))2|
= 12× 49

= 588ms−1

(e) Acceleration at t = 5 is

a =
dv

dt
= −24(1− 4t)(−4)

= 96(1− 4t)

a|t=5 = 96(1− 20)

= −1824ms−2

8. (a) v =
dx

dt
= 6t+ 4

v|t=3 = 6(3) + 4

= 22 m/s

(b) a =
dv

dt

= 6 m/s2

9. (a) a =
dv

dt
= 12t

a|t=3 = 12(3)

= 36 m/s2
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(b) x =

∫
v dt

= 2t3 − t+ c

51 = 2(1)3 − (1) + c

c = 50

x = 2t3 − t+ 50

xt=4 = 2(4)3 − 4 + 50

= 174 m

Another possible approach is to use the
known position and a definite integral from
the known time:

x = 51 +

∫ 4

1

(6t2 − 1) dt

= 51 +
[
2t3 − t

]4
1

= 51 +
(
2(4)3 − 4

)
−
(
2(1)3 − 1

)
= 51 + 124− 1

= 174 m

10. (a) a|t=0 = 6(0) + 4

= 4 m/s2

(b) v =

∫
(6t+ 4) dt

= 3t2 + 4t+ c

8 = 3(1)2 + 4(1) + c

c = 1

v = 3t2 + 4t+ 1

vt=3 = 3(3)2 + 4(3) + 1

= 40 m/s

(c) xt=2 = 9 +

∫ 2

1

(3t2 + 4t+ 1)dt

= 9 +
[
t3 + 2t2 + t

]2
1

= 9 +
(
(2)3 + 2(2)2 + 2

)
−
(
(1)3 + 2(1)2 + 1

)
= 9 + 18− 4

= 23 m

11. (a) a =
dv

dt

= 6
√

16 + t2 +
6t
(
1
2

)
(2t)

√
16 + t2

= 6
√

16 + t2 +
6t2√

16 + t2

=
6(16 + t2) + 6t2√

16 + t2

=
96 + 6t2 + 6t2√

16 + t2

=
96 + 12t2√

16 + t2

= 12
8 + t2√
16 + t2

a|t=0 = 12
8 + (0)2√
16 + (0)2

= 24 m/s2

(b) x =

∫
v dt

=

∫
(6t
√

16 + t2) dt

= 3

∫
2t(16 + t2)0.5 dt

=
3(16 + t2)1.5

1.5
+ c

= 2(16 + t2)1.5 + c

8 = 2(16 + 02)1.5 + c

8 = 128 + c

c = −120

x = 2(16 + t2)1.5 − 120

x|t=3 = 2(16 + (3)2)1.5 − 120

= 2(25)1.5 − 120

= 2(125)− 120

= 250− 120

= 130 m

12. v =

∫
adt

=

∫
6t(t2 + 2t+ 1)

5
dt

=

∫
6t3 + 12t2 + 6t

5
dt

= 0.3t4 + 0.8t3 + 0.6t2 + c

2 = 0.3(1)4 + 0.8(1)3 + 0.6(1)2 + c

2 = 1.7 + c

c = 0.3

v|t=0 = 0.3 m/s
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13. (a) v =
dx

dt
= −2 sin t

v|t=π
6

= −2 sin
π

6
= −1 m/s

(b) a =
dv

dt
= −2 cos t

a|t=π
2

= −2 cos
π

2
= 0

It is correct but not strictly necessary to
give units for the acceleration, since zero ac-
celeration means the same regardless of the
units being used.

14. (a) a =
dv

dt
= 8 cos 2t

a|t=π
6

= 8 cos
π

3

= 4 m/s2

(b) x =

∫
v dt

= −2 cos 2t+ c

3 = −2 cos 0 + c

c = 5

x = 5− 2 cos 2t

x|t=π
2

= 5− 2 cosπ

= 7 m

15. This question is simplified if you first recognise
that 4 sin t cos t = 2 sin 2t

(a) v =

∫
2 sin 2tdt

= − cos 2t+ c

3 = − cos 0 + c

c = 4

v = 4− cos 2t

v|t=π
3

= 4− cos
2π

3
= 4.5 m/s

(b) x = 5 +

∫ π
3

0

(4− cos 2t) dt

= 5 + [4t− 0.5 sin 2t]
π
3
0

= 5 +

(
4π

3
−
√

3

4

)
− (0− 0)

= 5 +
4π

3
−
√

3

4
≈ 8.756 m

16. v =
dx

dt

= 18(3t+ 1)2

a =
dv

dt
= 108(3t+ 1)

At t = 2, x = 2(3(2) + 1)3

= 686 m

v = 18(3(2) + 1)2

= 882 m/s

a = 108(3(2) + 1)

= 756 m/s2

17. (a) v =
dx

dt

=
(2t+ 3)− 2(t+ 1)

(2t+ 3)2

=
1

(2t+ 3)2

a =
dv

dt

=
−4

(2t+ 3)3

(b) At t = 1, x =
1 + 1

2(1) + 3

=
2

5
= 0.4 m

v =
1

(2(1) + 3)2

=
1

25
= 0.04 m/s

a =
−4

(2(1) + 3)3

= − 4

125

= −0.032 m/s2

18. (a) v =
dx

dt

= t2 − 12t− 45

= (t− 15)(t+ 3)

when v = 0

t = 15 (given that t ≥ 0)

x =
153

3
− 6(15)2 − 45(15) + 1000

= 100 m
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(b) a =
dv

dt
= 2t− 12

when a = 0

t = 6

x =
63

3
− 6(6)2 − 45(6) + 1000

= 586 m

19. “Hit the ground” means h = 0

42 + 29t− 5t2 = 0

t = 7 s (ignoring the negative root)

v =
dh

dt
= 29− 10t

v|t=7 = 29− 70

= −41 m/s

20. (a) v =
dx

dt
= 16− 2t

v|t=20 = 16− 40

= −24 m/s

∴ speed = 24 m/s

(b) v = 0

16− 2t = 0

t = 8 s

x = 8(16− 8)

= 64 m

(c) Provided there is no change in direction, dis-
tance travelled is equal to the difference be-
tween the displacements:

d = x|t=5 − x|t−1
= 5(16− 5)− 1(16− 1)

= 55− 15

= 40 m

(d) Between 5 and 10 seconds the particle
reaches its maximum displacement and re-
turns. We could find the distance travelled
by integrating the absolute value of the ve-
locity, but it’s simpler to do it in two parts:
from 5 to 8 seconds, and from 8 to 10 sec-
onds.

d = (64− 55) + (64− 10(16− 10))

= 9 + (64− 60)

= 13 m

21. v = c− 9.8t

initial velocity v|t=0 = c

at max. height v = 0

c− 9.8t = 0

c = 9.8t

250 = (9.8t)t− 4.9t2

250 = 9.8t2 − 4.9t2

250 = 4.9t2

t =

√
250

4.9

c = 9.8

√
250

4.9

= 70 m/s

22. v =
dx

dt

= 3t2 − 24t+ 36

d =

∫ 8

1

|3t2 − 24t+ 36|dt

= 71 m
This could also be done without a calculator.
First determine whether there is a change of di-
rection in the interval of interest:

v = 0

3t2 − 24t+ 36 = 0

t2 − 8t+ 12 = 0

(t− 2)(t− 6) = 0

There are two changes of direction in the inter-
val of interest so we need to find the distance in
three sub-intervals: 1–2, 2–6 and 6–8:

d = |x(2)− x(1)|
+ |x(6)− x(2)|
+ |x(8)− x(6)|

x(1) = 13 − 12(1)2 + 36(1) + 15

= 40

x(2) = 23 − 12(2)2 + 36(2) + 15

= 47

x(6) = 63 − 12(6)2 + 36(6) + 15

= 15

x(8) = 83 − 12(8)2 + 36(8) + 15

= 47

d = 7 + 32 + 32

= 71 m

(You should know how to do this without a cal-
culator, but your first impulse for a question like
this is to use the calculator if it is available to
you.)
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23. v =

∫
a dt

= 3t2 − 24t+ c

35 = 3(0)2 − 24(0) + c

c = 35

v = 3t2 − 24t+ 35

x =

∫
v dt

= t3 − 12t2 + 35t+ k

0 = (0)3 − 12(0)2 + 35(0) + k

k = 0

x = t3 − 12t2 + 35t

solve for the first x = 0, t > 0

t3 − 12t2 + 35t = 0

t(t− 5)(t− 7) = 0

t = 5

v = 3(5)2 − 24(5) + 35

= −10 m/s

24. v =

∫
a dt

= 2t− t2 + c

v|t=0 = 24

∴ v = 24 + 2t− t2

x =

∫
v dt

= 24t+ t2 − t3

3
+ k

x|t=0 = 0

∴ x = 24t+ t2 − t3

3

(a) v = 0

24 + 2t− t2 = 0

(4 + t)(6− t) = 0

t = 6 s

x = 24(6) + (6)2 − (6)3

3
= 144 + 36− 72

= 108 m

(b) x|t=3 = 24(3) + (3)2 − (3)3

3
= 72 + 9− 9

= 72 m

x|t=9 = 24(9) + (9)2 − (9)3

3
= 216 + 81− 243

= 54 m

(c) d = (108− 72) + (108− 54)

= 90 m

25. (a) v =

∫
adt

= 0.2t

x =

∫
v dt

= 0.1t2

x|t=180 = 0.1(180)2

= 3240 m

(Both constants of integration are zero to
account for the initial position and velocity
both being zero.)

(b) v = 0.2× 180

= 36 m/s

26. “In the fourth second” means from t = 3 to t = 4:

d =

∫ 4

3

|7 + 2t|dt

=

∫ 4

3

(7 + 2t) dt

=
[
7t+ t2

]4
3

= (28 + 16)− (21 + 9)

= 14 m

(The absolute value can safely be dispensed with
since v is positive for all positive t.)

27. “In the fourth second” means from t = 3 to t = 4.
Here v changes sign at t = 3.5 so the absolute
value must be retained. If doing the problem
without a calculator, the integral should be di-
vided into two parts, as follows:

d =

∫ 4

3

|7− 2t|dt

=

∫ 3.5

3

(7− 2t) dt+

∫ 4

3.5

(2t− 7) dt

=
[
7t− t2

]3.5
3

+
[
t2 − 7t

]4
3.5

= (24.5− 12.25)− (21− 9)

+ (16− 28)− (12.25− 24.5)

= 12.25− 12 + (−12)− (−12.25)

= 0.5 m

28. (a) The maximum value of sin 2t is 1, so the
maximum velocity is 2× 1 = 2 m/s.

(b) a =
dv

dt
= 4 cos 2t

(c) The maximum value of cos 2t is 1, so the
maximum acceleration is 4× 1 = 4 m/s2.

(d) x =

∫
v dt = − cos 2t+ c

0 = − cos 0 + c

c = 1

x = 1− cos 2t

(e) The maximum value of − cos 2t is 1, so the
maximum displacement is 1 + 1 = 2 m.
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29. (a) The minimum value of sin2 t is 0, so the min-
imum velocity is 3 × 0 = 0 m/s. (I.e. the
particle never moves backward.)

(b) a =
dv

dt
= 6 sin t cos t

= 3(2 sin t cos t)

= 3 sin 2t

(c) The maximum value of sin 2t is 1 which first
occurs when 2t = π

2 , i.e. t = π
4 s.

(d) x =

∫
v dt

=

∫
3 sin2 tdt

= −1.5

∫
(1− 2 sin2 t− 1) dt

= −1.5

∫
(cos 2t− 1) dt

= −0.75 sin 2t+ 1.5t+ c

0 = −0.75 sin 0 + 1.5(0) + c

c = 0

x = 1.5t− 0.75 sin 2t

(e) x = 1.5
(π

6

)
− 0.75 sin

(π
3

)
=

(
π

4
− 3
√

3

8

)
m

30. (a) ∆x =

∫ 4

0

3
√

1 + 2tdt

=

[
3(1 + 2t)1.5

1.5× 2

]4
0

=
[
(1 + 2t)1.5

]4
0

= 91.5 − 11.5

= 26 m

(b) Use the substitution

u = 1 + 2t t =
u− 1

2

du = 2dt dt =
du

2

∫ 4

0

3t
√

1 + 2tdt

=

∫ 1+2(4)

1+2(0)

3(u− 1)

2

√
u
du

2

=

∫ 9

1

0.75(u− 1)
√
udu

= 0.75

∫ 9

1

u1.5 − u0.5 du

= 0.75

[
u2.5

2.5
− u1.5

1.5

]9
1

=
[
0.3u2.5 − 0.5u1.5

]9
1

=
(

0.3(9)
5
2 − 0.5(9)

3
2

)
−
(

0.3(1)
5
2 − 0.5(1)

3
2

)
=
(
0.3(3)5 − 0.5(3)3

)
− (0.3− 0.5)

= (0.3(243)− 0.5(27)) + 0.2

= 72.9− 13.5 + 0.2

= 59.6 m

31. a =
dv

dt

=
√

3 cos t+ sin t

when a = 0
√

3 cos t+ sin t = 0

tan t = −
√

3

t =
2π

3

or t =
5π

3

x =

∫
v dt

= −
√

3 sin t− cos t+ c

0 = −
√

3 sin
π

6
− cos

π

6
+ c

0 = −
√

3

(
1

2

)
−
√

3

2
+ c

0 = −
√

3 + c

c =
√

3

x =
√

3−
√

3 sin t− cos t

when t =
2π

3

x =
√

3−
√

3 sin
2π

3
− cos

2π

3

=
√

3−
√

3

2
+

1

2

=

√
3 + 1

2
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when t =
5π

3

x =
√

3−
√

3 sin
5π

3
− cos

5π

3

=
√

3 +

√
3

2
− 1

2

=
3
√

3− 1

2

32. (a) v = 3x+ 2

dv

dt
= 3

dx

dt
a = 3v

= 3(3x+ 2)

= (9x+ 6) m/s2

(b) v = 3(4) + 2

= 14 m/s

a = 9(4) + 6

= 42 m/s2

33. (a) v = 3x2 − 2

dv

dt
= 6x

dx

dt
a = 6xv

= 6x(3x2 − 2)

= (18x3 − 12x) m/s2

(b) v = 3(1)2 − 2

= 1 m/s

a = 18(1)3 − 12(1)

= 6 m/s2

Exercise 7C

1.
dX

dt
=

dX

dt

dp

dt
= (2 cos 2p)(2)

= 4 cos 2p

= 4 cos
π

3
= 2

2.
dA

dt
=

dA

dx

dx

dt
= 0.6 sin(3x) cos(3x)

= 0.3 sin 6x

= 0.3 sin
π

6
= 0.15

3. y2 = 3x3 + 1

2y
dy

dx
= 9x2

dy

dx
=

9x2

2y

dy

dt
=

dy

dx

dx

dt

=
0.45x2

y

When y = 5

(52) = 3x3 + 1

3x3 = 24

x3 = 8

x = 2

dy

dt
=

0.45(2)2

5
= 0.36

4. x2 + y2 = 400

2x+ 2y
dy

dx
= 0

dy

dx
= −x

y

dy

dt
=

dy

dx

dx

dt

= −6
x

y

When y = 12

x2 + (12)2 = 400, x ≥ 0

x =
√

400− 144

= 16

dy

dt
= −6

16

12
= −8
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5. A =
1

2
(10)(10) sinx

= 50 sinx

dA

dx
= 50 cosx

dA

dt
=

dA

dx

dx

dt
= 0.5 cosx

= 0.5 cos
π

3

= 0.25 cm2/s

6. A =
1

2
x2 sin 45◦

=

√
2x2

4

dA

dt
=

√
2x

2

dx

dt

=
0.1
√

2x

2

= 0.05
√

2x

= 0.05
√

2 (10)

= 0.5
√

2

≈ 0.707 cm2/s

7. x2 + y2 = 102

2x+ 2y
dy

dx
= 0

dy

dx
= −x

y

dy

dt
=

dy

dx

dx

dt

= −0.1
x

y

When t = 20

x = 4 + 0.1t

= 6 cm

y =
√

100− 62

= 8 cm

dy

dt
= −0.1

6

8
= −0.075 cm/s

8. Let x be the side length of the triangle.

A =
1

2
x2 sin 60◦

=

√
3x2

4

dA

dt
=

√
3x

2

dx

dt

=

√
3 (20)

2
(0.2)

= 2
√

3 cm2/s

9. A regular hexagon can be divided into six equi-
lateral triangles as shown.

A = 6×
√

3x2

4

=
3
√

3x2

2
dA

dt
= 3
√

3x
dx

dt

= 3
√

3 (20)(1)

= 60
√

3 cm2/minute

=
√

3 cm2/s

10. From the cross-section being an equilateral trian-
gle we have the relationship between height and
radius:

tan 60◦ =
h

r

h =
√

3 r

The volume is

V =
πr2h

3

=
π
√

3 r3

3

Differentiating with respect to t

dV

dt
= π
√

3 r2
dr

dt

and substitute for r and dr
dt

dV

dt
= π
√

3 (20)2(0.5)

= 200π
√

3

≈ 1090 cm3/s

11. Let x be the distance between the base of the
ladder and the wall. Let y be the height of the
top of the ladder above the ground.

x2 + y2 = 5.22

2x+ 2y
dy

dx
= 0

dy

dx
= −x

y

dy

dt
=

dy

dx

dx

dt

= −0.1
x

y

x =
√

5.22 − 4.82

= 2.0

dy

dt
= −0.1

2.0

4.8
= −0.0417 m/s

71



Exercise 7C Solutions to A.J. Sadler’s

The top is moving down at approximately 4.2
cm/s.

12. (a) Let l be the length of the shadow and let
d be the person’s distance from the lamp-
post. Using the similar triangles as a start-
ing point,

l + d

l
=

4.5

1.5
= 3

l + d = 3l

d = 2l

l = 0.5d

dl

dt
= 0.5

dd

dt
= 1 m/s

The shadow grows by 1 m/s.

(b) The tip of the shadow moves with the com-
bined speed of the person and the increasing
length of the shadow, i.e. 1 + 2 = 3 m/s.

13. r2 + (2− h)2 = 22

2r
dr

dt
− 2(2− h)

dh

dt
= 0

2r
dr

dt
= 2(2− h)

dh

dt
dr

dt
=

2− h
r

dh

dt
dh

dt
= −0.005 m/s

h = 1

r =
√

22 − (2− 1)2

=
√

3

dr

dt
=

2− 1√
3

(−0.005)

= − 1

200
√

3

= −
√

3

6
00 m/s

= −
√

3

6
cm/s

The radius is decreasing at a rate of
√
3
6 ≈ 0.29

cm/s

14. Let BC= x and AB= y.

y2 = x2 + 202

2y
dy

dt
= 2x

dx

dt
dy

dt
=
x

y

dx

dt

=
48√

482 + 202
(15)

=
48× 15

52

=
180

13

≈ 13.85 ms−1

15. Let d be the distance from A to the balloon and
let h be the height of the balloon.

d2 = h2 + 602

2d
dd

dt
= 2h

dh

dt
dd

dt
=
h

d

dh

dt

=
80√

802 + 602
(5)

= 4 m/s

16. x = 8 tan θ

dx

dt
=

8

cos2 θ

dθ

dt

cos2 θ =

(
8√

82 + 52

)2

=
64

89
dx

dt
= (8)

(
89

64

)
(4π)

= 44.5π

≈ 139.8 ms−1

Note that it is not necessary to determine θ in
order to find cos θ. Use the definition of cosine
as adjacent

hypotenuse to determine cos θ directly.

17. Rotation of 5 revolutions per minute is 10π radi-
ans per minute or π

6 radians per second.

Let y be the distance along the coastline from the
nearest point at time t. Let x be the straight line
distance to the lighthouse at time t. We want dy

dt
when x = 4.

y2 + 32 = x2

2y
dy

dx
= 2x

dy

dx
=
x

y

When x = 4, y =
√

42 − 32

=
√

7

dy

dx
=

4√
7
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cos θ =
3

x

x =
3

cos θ
dx

dθ
= 3

sin θ

cos2 θ

When x = 4, cos θ =
3

4

sin θ =

√
7

4

dx

dθ
= 3×

√
7
4
9
16

= 3× 4
√

7

9

=
4
√

7

3

dy

dθ
=

dy

dx

dx

dθ

=

(
4√
7

)(
4
√

7

3

)

=
16

3

dy

dt
=

dy

dθ

dθ

dt

=

(
16

3

)(π
6

)
=

8π

9
≈ 2.79 km/s

18. tan θ =
h

600
1

cos2 θ

dθ

dt
=

1

600

dh

dt
dθ

dt
=

cos2 θ

600

dh

dt

cos θ =
600√

6002 + 8002

= 0.6

dθ

dt
=

0.62

600
× 10

dh

dt
= 0.006 rads/sec

19. Let x be the horizontal distance AB at time t.

tan θ =
800

x
1

cos2 θ

dθ

dt
= −800

x2
dx

dt
dθ

dt
= −800 cos2 θ

x2
dx

dt

cos2 θ =

(
1000√

10002 + 8002

)
=

25

41

dθ

dt
= −

800× 25
41

10002
(−200)

=
4 000 000

41 000 000

=
4

41
rads/s

20. tan θ =
h

200
1

cos2 θ

dθ

dt
=

1

200

dh

dt
dh

dt
=

200

cos2 θ

(
1

20

)
=

10

cos2 θ
d2h

dt2
= −20(− sin θ)

cos3 θ

dθ

dt

=
20 tan θ

cos2 θ

(
1

20

)
=

tan θ

cos2 θ

(a) When θ = π
6 ,

v =
dh

dt

=
10

cos2 θ

=
10(√
3
2

)2
=

10
3
4

=
40

3
ms−1

a =
d2h

dt2

=
tan θ

cos2 θ

=

√
3
3
3
4

=
4
√

3

9
ms−2
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(b) When θ = π
3 ,

v =
dh

dt

=
10

cos2 θ

=
10(
1
2

)2
=

10
1
4

= 40 ms−1

a =
d2h

dt2

=
tan θ

cos2 θ

=

√
3

1
4

= 4
√

3 ms−2

21. Let s be the length of the shadow CE and d be
the distance AC. By similar triangles

s+ d

s
=

9

1.8
s+ d = 5s

d = 4s

s = 0.25d

ds

dd
= 0.25

d2 = 122 + y2

2d
dd

dy
= 2y

dd

dy
=
y

d

ds

dt
=

ds

dd

dd

dy

dy

dt

= (0.25)
(y
d

)
(2)

=
y

2d

When AC = 20, y = 20

d =
√

122 + 202

= 4
√

34

ds

dt
=

20

8
√

34

=
5

2
√

34

≈ 0.43 m/s

The shadow is growing 0.43 metres per second.

Exercise 7D

1–3 No working required.

4. u = 2x

du

dx
= 2

d

dx

(∫ 2x

1

5tdt

)
=

d

du

(∫ u

1

5tdt

)
du

dx

= (5u)(2)

= 2(5)2x

5. u = 5x

du

dx
= 5

d

dx

(∫ 5x

1

(3 + 4t+ sin t)dt

)
=

d

du

(∫ u

1

(3 + 4t+ sin t)dt

)
du

dx

= (3 + 4u+ sinu)(5)

= 5 (3 + 20x+ sin(5x))

= 15 + 100x+ 5 sin(5x)

6.

0.2

0.4

0.6

0.8

1

x

y

π
4

π
2

3π
4

π

V =

∫ π

0

πy2dx

=

∫ π

0

π(
√

sinx)2dx

=

∫ π

0

π sinx dx

= [π(− cosx)]
π
0

= (−π cosπ)− (−π cos 0)

= π + π

= 2π units3
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7.

0.2

0.4

0.6

0.8

1

x

y

π
4

π
2

3π
4

π

V =

∫ π

0

π(sinx)2dx

= −π
2

∫ π

0

−2 sin2 xdx

= −π
2

∫ π

0

(1− 2 sin2 x− 1) dx

= −π
2

∫ π

0

(cos(2x)− 1) dx

= −π
2

[
sin 2x

2
− x
]π
0

= −π
2

((
sin 2π

2
− π

)
−
(

sin 0

2
− 0

))
= −π

2
(−π − 0)

=
π2

2
units3

8.

1

2

3

x

y

π
4

π
2−π4−π2

V =

∫ π
2

−π2
πy21dx−

∫ π
2

−π2
πy22dx

=

∫ π
2

−π2
π(y21 − y22)dx

=

∫ π
2

−π2
π
(
(3 cosx)2 − (cosx)2

)
dx

=

∫ π
2

−π2
8π cos2 x dx

= 4π

∫ π
2

−π2
(2 cos2 x− 1 + 1)dx

= 4π

∫ π
2

−π2
(cos 2x+ 1)dx

= 4π

[
sin 2x

2
+ x

]π
2

−π2

= 4π
((

sin
π

2
+
π

2

)
−
(

sin
(
−π

2

)
− π

2

))
= 4π

(π
2

+
π

2

)
= 4π2 units3

9. 1 2 3 4 x

y

0.2

0.4

0.6

0.8

1

V =

∫ 4

1

π

(
1√
x

)2

dx

=

∫ 4

1

π

x
dx

= π [lnx]
4
1

= π(ln 4− ln 1)

= π ln 4 units3

10.

1

2

3

4

x

y

0.5 1 1.5 2

V =

∫ 4

2

πx2dy

=

∫ 4

2

πy dx

=

[
πy2

2

]4
2

=
π

2
(42 − 22)

= 6π units3
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11. First possibility:

0.2

0.4

0.6

0.8

1

x

y

π
8

π
4

3π
8

π
2

V =

∫ π
2

0

π

(
sinx

2

)2

dy

=
π

4

∫ π
2

0

sin2 xdy

= −π
8

∫ π
2

0

(1− 2 sin2 x− 1) dy

= −π
8

∫ π
2

0

(cos 2x− 1) dy

= −π
8

[
sin 2x

2
− x
]π

2

0

= −π
8

(
−π

2
− 0
)

=
π2

16
m3

Second possibility:

0.2

0.4

0.6

x

y

π
8

π
4

3π
8

π
2

V =

∫ π
2

0

π

(√
x

2π

)2

dy

=

∫ π
2

0

π
x

2π
dy

=

∫ π
2

0

x

2
dy

=

[
x2

4

]π
2

0

= (
π2

16
− 0)

=
π2

16
m3

Chapter 7 Extension Activity

1. The y-coordinate of the centre of gravity is 0 from
the symmetry of the shape.

Sum of moments is∫ r

0

mg2yxdx = −mg
∫ r

0

−2x
√
r2 − x2 dx

= −mg
[

2

3
(r2 − x2)

3
2

]r
0

= −2

3
mg
(

(0)
3
2 − (r2)

3
2

)
=

2

3
mgr3

The moment of the sum is

mg
πr2

2
(x̄)

Thus

mg
πr2

2
(x̄) =

2

3
mgr3

π

2
(x̄) =

2

3
r

x̄ =
4r

3π

∴ the centre of gravity is at the point
(
4r
3π , 0

)
.

2. The y-coordinate of the centre of gravity is 0 from
the symmetry of the shape.

The line segment AB is on the line passing
through the origin and (a, b), i.e. y = b

ax.

Sum of moments is

∫ a

0

mg2yxdx = 2mg

∫ a

0

(
b

a
x

)
xdx

=
2mgb

a

∫ a

0

x2 dx

=
2mgb

a

[
x3

3

]a
0

=
2mgb

3a

[
x3
]a
0

=
2mgb

3a

(
a3 − 03

)
=

2mga2b

3

The moment of the sum is

mgabx̄
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Unit 3D Specialist Mathematics Chapter 7 Extension Activity

Thus

mgabx̄ =
2mga2b

3

x̄ =
2a

3

∴ the centre of gravity is at the point
(
2a
3 , 0

)
.

3. Area of one strip:

Ax ≈ ((0.5x+ 2)− (−0.5x− 2)) δx

= (x+ 4)δx

Moment of one strip:

Ix ≈ mgx(x+ 4)δx

Sum of moments:

I =

∫ 6

2

mgx(x+ 4) dx

= mg

[
x3

3
+ 2x2

]6
2

= mg

((
63

3
+ 2(6)2

)
−
(

23

3
+ 2(2)2

))
= mg

(
(72 + 72)−

(
8

3
+ 8

))
=

400

3
mg

Total area:

A =
1

2
((2 + 4) + (6 + 4)) (6− 2)

= 2 (6 + 10)

= 32

Moment of sum:

I = 32mgx̄

∴ 32mgx̄ =
400

3
mg

x̄ =
25

6

The symmetry of the figure gives us ȳ = 0 so the
centre of gravity is at

(
25
6 , 0

)
.

4. x

y

y = kx2

p

From the symmetry of the figure, x̄ = 0.

Taking horizontal strips of height δy and the mo-
ment of inertia about the x−axis,

y = kx2

x = ±
√
y

k

Area of one strip:

Ay ≈ 2

√
y

k
δy

Moment of one strip:

Iy ≈ mgy
(

2

√
y

k

)
δy

=
2mg√
k
y

3
2 δy

Sum of moments:

I =

∫ p

0

2mg√
k
y

3
2 dy

=
2mg√
k

[
2

5
y

5
2

]p
0

=
4mg

5
√
k

[
y

5
2

]p
0

=
4mgp

5
2

5
√
k

Total area:

A =

∫ p

0

2

√
y

k
dy

=
2√
k

[
2

3
y

3
2

]p
0

=
4p

3
2

3
√
k

Moment of sum:

I =
4p

3
2

3
√
k
mgȳ

=
4mgp

3
2

3
√
k
ȳ

∴
4mgp

3
2

3
√
k
ȳ =

4mgp
5
2

5
√
k

ȳ =
3p

5

Hence the centre of gravity is at
(
0, 3p5

)
.

5. From the symmetry of the figure, ȳ = 0.

The radius of one disc is

y =
√
r2 − x2
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Volume of one disc:

Vx ≈ πy2δx
= π(r2 − x2)δx

Moment of one strip (where m is mass per unit
volume):

Ix ≈ mgxπ(r2 − x2)δx

= πmg(r2x− x3)δx

Sum of moments:

I =

∫ r

0

πmg(r2x− x3) dx

= πmg

[
r2x2

2
− x4

4

]r
0

=
πmg

4

[
2r2x2 − x4

]r
0

=
πmgr4

4

Total volume:

V =
2πr3

3

Moment of sum:

I =
2πr3

3
mgx̄

=
2πmgr3

3
x̄

∴
2πmgr3

3
x̄ =

πmgr4

4

x̄ =
3r

8

Hence the centre of gravity is at
(
3r
8 , 0

)
.

6. From the symmetry of the figure, ȳ = 0.

Slice the figure into vertical discs of thickness δx.
The radius of one disc is

y =
xr

h

Volume of one disc:

Vx ≈ πy2δx

= π
(xr
h

)2
δx

=
πr2x2

h2
δx

Moment of one strip (where m is mass per unit
volume):

Ix ≈ mgx
(
πr2x2

h2

)
δx

=

(
πmgr2x3

h2

)
δx

Sum of moments:

I =

∫ h

0

πmgr2x3

h2
dx

=
πmgr2

h2

[
x4

4

]h
0

=
πmgr2h2

4

Total volume:

V =
πr2h

3

Moment of sum:

I =
πr2h

3
mgx̄

=
πmgr2h

3
x̄

∴
πmgr2h

3
ȳ =

πmgr2h2

4

ȳ =
3h

4

Hence the centre of gravity is at
(
3h
4 , 0

)
.

7. 1 2 3 4 x

y

3

6

9

12

15

18

Divide the shape into vertical strips of width δx.
Area of one strip:

Ax ≈
(
x2 + 2

)
δx

Moment of one strip about the y-axis:

Ix ≈ mgx(x2 + 2)δx

Sum of moments:

I =

∫ 4

0

mgx(x2 + 2) dx

= mg

∫ 4

0

(x3 + 2x) dx

= mg

[
x4

4
+ x2

]4
0

= mg(64 + 16)

= 80mg
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Total area:

A =

∫ 4

0

(x2 + 2) dx

=

[
x3

3
+ 2x

]4
0

=
64

3
+ 8

=
88

3

Moment of sum:

I =
88

3
mgx̄

∴
88

3
mgx̄ = 80mg

x̄ =
240

88

=
30

11

Now consider the moment of each strip about
the x-axis. The centre of gravity of each strip is
0.5y from the x-axis (as the hint states) so the

moment of each strip is

Ix ≈ mg
y

2
(x2 + 2)δx

=
mg

2
(x2 + 2)(x2 + 2)δx

=
mg

2
(x4 + 4x2 + 4)δx

Sum of moments:

I =

∫ 4

0

mg

2
(x4 + 4x2 + 4) dx

=
mg

2

[
x5

5
+

4x3

3
+ 4x

]4
0

=
mg

2

(
1024

5
+

256

3
+ 16

)
=

2296mg

15

Moment of sum:

I = mgAȳ

=
88mg

3
ȳ ∴

88mg

3
ȳ =

2296mg

15

ȳ =
287

55

The centre of gravity is (x̄, ȳ) =
(
30
11 ,

287
55

)
.

Miscellaneous Exercise 7

1-2 What working there is for this question is trivial
enough (I hope) to not need further elucidation
here.

3. (a) 2|x| − 3 < 0

2|x| < 3

|x| < 3

2

x <
3

2

and − x < −3

2

∴ −3

2
< x <

3

2
(b) First consider the case 2x − 3 ≥ 0 so
|2x− 3| = 2x− 3. It also follows that x ≥ 3

2
so |x| = x. The inequality then gives

2|x| − 3 < |2x− 3|
2x− 3 < 2x− 3

This is clearly a contradiction and so we
must exclude x ≥ 3

2 from the solution.

Next consider the case 2x−3 < 0 and x ≥ 0.
This gives |2x− 3| = −(2x− 3) and |x| = x.
Hence

2|x| − 3 < |2x− 3|
2x− 3 < −(2x− 3)

2x− 3 < −2x+ 3

4x < 6

x <
3

2

Finally consider the case 2x − 3 < 0 and
x < 0. This gives |2x− 3| = −(2x− 3) and
|x| = −x. Hence

2|x| − 3 < |2x− 3|
−2x− 3 < −(2x− 3)

−2x− 3 < −2x+ 3

−3 < 3

This is true regardless of the value of x.

Combining these results gives us the solu-
tion x < 3

2 .
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4. (a) Consider the three possible cases: x > 3,
1 < x ≤ 3 and x ≤ 1.

For x > 3, x− 3 > 0 so |x− 3| = x− 3 and
x− 1 > 0 so |x− 1| = x− 1;

|x− 3|+ |x− 1| = 4

x− 3 + x− 1 = 4

2x− 4 = 4

x = 4

For 1 < x ≤ 3, x−3 ≤ 0 so |x−3| = −x+3
and x− 1 > 0 so |x− 1| = x− 1;

|x− 3|+ |x− 1| = 4

−x+ 3 + x− 1 = 4

2 = 4

No solution.

For x ≤ 1, x − 3 < 0 so |x − 3| = −x + 3
and x− 1 ≤ 0 so |x− 1| = −x+ 1;

|x− 3|+ |x− 1| = 4

−x+ 3− x+ 1 = 4

−2x+ 4 = 4

x = 0

The two solutions are x = 0 and x = 4.

(b) Again, consider the three possible cases:
x > 3, 1 < x ≤ 3 and x ≤ 1.

For x > 3, x− 3 > 0 so |x− 3| = x− 3 and
x− 1 > 0 so |x− 1| = x− 1;

|x− 3|+ |x− 1| = 2

x− 3 + x− 1 = 2

2x− 4 = 2

x = 3

Strictly speaking this is not in the part of
the domain we are considering (but x = 3
is a solution as shown by the next part.)

For 1 < x ≤ 3, x−3 ≤ 0 so |x−3| = −x+3
and x− 1 > 0 so |x− 1| = x− 1;

|x− 3|+ |x− 1| = 2

−x+ 3 + x− 1 = 2

2 = 2

This is true for all 1 < x ≤ 3

For x ≤ 1, x − 3 < 0 so |x − 3| = −x + 3
and x− 1 ≤ 0 so |x− 1| = −x+ 1;

|x− 3|+ |x− 1| = 2

−x+ 3− x+ 1 = 2

−2x+ 4 = 2

−2x = −2

x = 1

The two solution is 1 ≤ x ≤ 3.

5.
δy

δx
≈ dy

dx
= sinx+ x cosx

δy ≈ δx(sinx+ x cosx)

= 0.05(sin 2.5 + 2.5 cos 2.5)

= −0.07

6. A = ACC−1

=

[
2 −4

11 3

] [
0.2 0.1
−0.4 0.3

]
=

[
2 −1
1 2

]
B = C−1CB

=

[
0.2 0.1
−0.4 0.3

] [
2 3
6 4

]
=

[
1 1
1 0

]

7.

[
a b
c d

] [
1 2
−1 −3

]
=

[
4 9
1 1

]
[

1 2
−1 −3

]−1
=

1

−3 + 2

[
−3 −2

1 1

]
=

[
3 2
−1 −1

]
[
a b
c d

]
=

[
4 9
1 1

] [
3 2
−1 −1

]
=

[
3 −1
2 1

]
a = 3, b = −1, c = 2, d = 1

8. AB =

[
5 2
x y

] [
1 6
−3 z

]
=

[
−1 30 + 2z

x− 3y 6x+ yz

]
BA =

[
1 6
−3 z

] [
5 2
x y

]
=

[
5 + 6x 2 + 6y
−15 + xz −6 + yz

]
AB = BA[

−1 30 + 2z
x− 3y 6x+ yz

]
=

[
5 + 6x 2 + 6y
−15 + xz −6 + yz

]
5 + 6x = −1

x = −1[
−1 30 + 2z

−1− 3y −6 + yz

]
=

[
−1 2 + 6y

−15− z −6 + yz

]
30 + 2z = 2 + 6y

2z = −28 + 6y

z = 3y − 14

check: − 1− 3y = −15− z
14− 3y = −z

z = 3y − 14

9. No working required.
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10.
dy

dx
= 2x lnx+ x2

1

x
= 2x lnx+ x

= x(2 lnx+ 1)

11-12 No working required.

13. (a) e
πi
2 = cos

π

2
+ i sin

π

2
= 0 + i

= (0, 1)

(b) e(2−0.5πi) = (e2)(e0.5πi)

= e2 (cos(−0.5π) + i sin(−0.5π))

= e2(0− i)

= (0,−e2)

(c) e2 + 4e
πi
3 = e2 + 4 cos

π

3
+ 4i sin

π

3

= e2 + 2 + 2
√

3i

= (e2 + 2, 2
√

3)

14.

∫
dA

A
=

∫
−0.02 dt

lnA = −0.02t+ c

A = A0e−0.02t

A

A0
= e−0.02t

e−0.02th = 0.5

−0.02th = ln(0.5)

th =
ln(0.5)

−0.02

≈ 34.66 years

15. (a) u = 3x2 − 5

du = 6xdx∫
x(3x2 − 5)7 dx =

∫
u7

du

6

=
u8

8× 6
+ c

=
(3x2 − 5)8

48
+ c

(b) u = x− 5

x = u+ 5

du = dx∫
x(x− 5)7 du =

∫
(u+ 5)(u)7 du

=

∫
(u8 + 5u7) du

=
u9

9
+

5u8

8
+ c

=
u8

72
(8u+ 45) + c

=
(x− 5)8

72
(8(x− 5) + 45) + c

=
(x− 5)8

72
(8x− 40 + 45) + c

=
(x− 5)8

72
(8x− 5) + c

(c) u = x2 − 3

du = 2 dx∫
8x√
x2 − 3

dx =

∫
4√
u
du

=
4
√
u

0.5
+ c

= 8
√
x2 − 3 + c

(d) u = 5x− 2

x =
u+ 2

5
du = 5 dx∫

10x
√

5x− 2 dx

=

∫
2(u+ 2)

√
u
du

5

=
2

5

∫
(u

3
2 + 2u

1
2 ) du

=
2

5

(
2

5
u

5
2 +

2

3
(2u

3
2 )

)
+ c

=
4

75
u

3
2 (3u+ 10) + c

=
4

75
(5x− 2)

3
2 (3(5x− 2) + 10) + c

=
4

75
(5x− 2)

3
2 (15x− 6 + 10) + c

=
4

75
(5x− 2)

3
2 (15x+ 4) + c

(e) u = x2 − 5

du = 2x dx∫
8x sin(x2 − 5) dx =

∫
4 sinudu

= −4 cosu+ c

= −4 cos(x2 − 5) + c

(f) u = 1 + ex

du = ex dx∫
ex(1 + ex)4 dx =

∫
u4 du

=
u5

5
+ c

=
1 + ex

5
+ c
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(g) u = x− 3

x = u+ 3

du = dx∫
4x√
x− 3

dx =

∫
4(u+ 3)√

u
du

=

∫
(4u0.5 + 12u−0.5)du

=
4u1.5

1.5
+

12u0.5

0.5
+ c

=
8u1.5

3
+ 24u0.5 + c

=
8u1.5 + 72u0.5

3
+ c

=
8

3

√
u(u+ 9) + c

=
8

3

√
x− 3(x− 3 + 9) + c

=
8

3

√
x− 3(x+ 6) + c

(h) u = x+ 2

x = u− 2

2x = 2u− 4

2x+ 1 = 2u− 3

du = dx∫
2x+ 1

(x+ 2)3
dx =

∫
2u− 3

u3
dx

=

∫
(2u−2 − 3u−3)dx

=
2u−1

−1
− 3u−2

−2
+ c

= −2u−1 + 1.5u−2 + c

=
1.5− 2u

u2
+ c

=
1.5− 2(x+ 2)

(x+ 2)2
+ c

=
1.5− 2x− 4

(x+ 2)2
+ c

=
−2x− 2.5

(x+ 2)2
+ c

= − 4x− 5

2(x+ 2)2
+ c

(i) u = 2x

= eln 2x

= ex ln 2

du = ln(2)ex ln 2 dx

= ln(2) 2x dx∫
2x dx =

∫
du

ln 2

=
u

ln 2
+ c

=
2x

ln 2
+ c

(j) u = 5x+1

du = ln(5) 5x+1 dx∫
5x+1 dx =

∫
du

ln 5

=
u

ln 5
+ c

=
5x+1

ln 5
+ c

16.
dM

dt
= −kM∫

dM

M
=

∫
k dt

lnM = kt+ c

M = M0ekt

0.5 = e1600k

1600k = − ln 2

k =
− ln 2

1600
≈ −0.000433

M0 = 5000 g

M = 5000e−0.000433t g

After 100 years,

M = 5000e−0.000433×100

= 5000e−0.0433

≈ 4 788 g

17. (a)

∫ 2π
3

0

sinxdx = [− cosx]
2π
3
0

=
1

2
+ 1

= 1.5

(b)

∫ 0

−π2
sin 2xdx =

[
− cos 2x

2

]0
−π2

= −1

2
− 1

2
= −1

(c)

∫ π
2

−π2
sin2 xdx

= −1

2

∫ π
2

−π2
(1− 2 sin2 x− 1) dx

= −1

2

∫ π
2

−π2
(cos 2x− 1) dx

= −1

2

[
sin 2x

2
− x
]π

2

−π2

= −1

4
[sin(2x)− 2x]

π
2

−π2

= −1

4
((sin(π)− π)− (sin(−π) + π))

= −1

4
(−π − π)

=
π

2
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18. (a)

∫ 3

1

xa dx =

[
xa+1

a+ 1

]3
1

=
3a+1

a+ 1
− 1a+1

a+ 1

=
(3)3a − 1

a+ 1

(b)

∫ a

2

6x2 dx =
[
2x3
]a
2

= 2a3 − 16

(c) Let u = sin 2x

du = 2 cos 2x dx∫ π
12

0

sina 2x cos 2x dx =

∫ sin π
6

0

ua
du

2

=

∫ 1
2

0

ua

2
du

=

[
ua+1

2(a+ 1)

] 1
2

0

=

( (
1
2

)a+1

2(a+ 1)

)

=
1

2(a+ 1)2a+1

=
1

(a+ 1)2a+2

19. (a) d =

∫ 0.5

0

|v|dt

=

∫ 0.5

0

|5 cos 2t|dt

5 cos 2t > 0 ∀0 ≤ t ≤ 0.5

∴ d =

∫ 0.5

0

5 cos(2t) dt

=

[
5

2
sin 2t

]0.5
0

= 2.5 sin 1

≈ 2.10m

(b) d =

∫ 1

0

|5 cos 2t|dt

=

∫ π
4

0

5 cos(2t) dt−
∫ 1

π
4

5 cos(2t) dt

=

[
5

2
sin 2t

]π
4

0

−
[

5

2
sin 2t

]1
π
4

= (2.5− 0)− (2.5 sin 2− 2.5)

= 5− 2.5 sin 2

≈ 2.73m

20. To prove:

sin3 θ =
3 sin θ − sin(3θ)

4

Proof:

sin(3θ) = Im(cis(3θ))

= Im(cis3 θ)

= Im(cos3 θ + 3i sin θ cos2 θ

− 3 sin2 θ cos θ − i sin3 θ)

= 3 sin θ cos2 θ − sin3 θ

= 3 sin θ(1− sin2 θ)− sin3 θ

= 3 sin θ − 3 sin3 θ − sin3 θ

= 3 sin θ − 4 sin3 θ

RHS =
3 sin θ − sin(3θ)

4

=
3 sin θ − (3 sin θ − 4 sin3 θ)

4

=
4 sin3 θ

4

= sin3 θ

= LHS

�

A =

∫ π
2

0

|sin3 θ|dθ

=

∫ π
2

0

sin3 θ dθ

=

∫ π
2

0

3 sin θ − sin(3θ)

4
dθ

=

[−3 cos θ + 1
3 cos(3θ)

4

]π
2

0

=

[
cos(3θ)− 9 cos θ

12

]π
2

0

=

(
cos 3π

2 − 9 cos π2
12

)
−
(

cos 0− 9 cos 0

12

)
= 0−

(
−8

12

)
=

2

3
units2
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A =

∫ π
2

0

sin3 θ dθ

=

∫ π
2

0

sin θ(1− cos2 θ) dθ

=

∫ π
2

0

(sin θ − cos2 θ sin θ) dθ

=

[
− cos θ +

cos3 θ

3

]π
2

0

=

(
− cos

π

2
+

cos3 π2
3

)
−
(
− cos 0 +

cos3 0

3

)
= 0−

(
−1 +

1

3

)
=

2

3
units2

21. (a)

To (next location)
A B C D

From
(present
loca-
tion)




A 0 1/2 0 1/2
B 1/3 0 1/3 1/3
C 0 1/2 0 1/2
D 1/3 1/3 1/3 0

(b) 17 seconds is after 3 transitions, so

[
0 0 200 0

]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


3

=
[

22 78 22 78
]

(c)
[

0 0 0 200
]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


3

=
[

52 52 52 44
]

(d) Intuitively I would expect 50% more people
at B and D than at A and C, so about 40 at
each of A and C and 60 at each of B and D.
This would be my intuitive guess regardless
of initial positions.

[
200 0 0 0

]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


15

=
[

40 60 40 60
]

check that this has in fact reached the long
term average:

[
200 0 0 0

]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


16

=
[

40 60 40 60
]

(e)
[

0 200 0 0
]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


15

=
[

40 60 40 60
]

[
0 200 0 0

]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


16

=
[

40 60 40 60
]

(f)
[

50 50 50 50
]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


15

=
[

40 60 40 60
]

[
50 50 50 50

]


0 1
2 0 1

2
1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0


16

=
[

40 60 40 60
]

22.
dT

dt
= kT∫

dT

T
=

∫
k dt

lnT = kt+ c

T = T0ekt

27.7− 22 = (28.6− 22)e1k

k = ln
27.7− 22

28.6− 22

≈ −0.147

28.6− 22 = (37− 22)e−0.147t

−0.147t = ln
28.6− 22

37− 22

t =
ln 28.6−22

37−22
−0.147

= 5.6

5.6 hours before 1.30pm is 7:54am (although it’s
unlikely that such precision is realistic—8am is a
more sensible estimate.)
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Unit 3D Specialist Mathematics CHAPTER 8

Chapter 8

Exercise 8A

1. No working required.

2. (a) k2 = 4 so k = 2 and T = 2π
2 = π.

(b) k2 = 1 so k = 1 and T = 2π
1 = 2π.

(c) k2 = 25 so k = 5 and T = 2π
5 = 0.4π.

3. (a) T = 2π
k = 4π so k = 0.5 and x = sin 0.5t.

(b) x = − sin 0.5t

(c) T = 2π
k = π so k = 2 and x = 3 sin 2t.

(d) T = 2π
k = 2 so k = π and x = −0.5 sinπt.

4. (a) T = 2π
k = π so k = 2 and x = 2 cos 2t.

(b) T = 2π
k = 0.5π so k = 4 and x = 1.5 cos 4t.

(c) T = 2π
k = 0.5 so k = 4π and x = 0.5 cos 4πt.

5. (a) T = 2π
k = π so k = 2 and x = 2.5 sin 2t or

x = −2.5 sin 2t (depending on the direction
of the motion at time t = 0).

(b) v =
dx

dt
= 5 cos 2t

= 5 cos
π

3

= 2.5ms−1

6. (a) x = 5 cos 5t+ 3 sin 5t

= r sin(5t+ α)

where r sinα = 5

r cosα = 3

∴ r2 = 52 + 32

Hence the amplitude is
√

34m. (We could
proceed to find the phase angle α but this
is not requested by the question.)

Period T = 2π
5 = 0.4πs.

(b) Amplitude is
√

32 + 72 =
√

58m. (You can
use the approach in part (a) above, but you
should probably remember the general re-
sult for questions like this.)

Period T = 2π
2 = πs.

7. (a) To prove: ẍ = −k2x
Proof:

ẋ =
d

dt
4 sin

πt

10

=
2π

5
cos

πt

10

ẍ =
d

dt

2π

5
cos

πt

10

= −π
2

25
sin

πt

10

= − π2

102

(
4 sin

πt

10

)
= −

( π
10

)2
x

Taking k = π
10 this gives ẍ = −k2x. �

(In my opinion the wording of this question
is a little unclear. Since it might well be
reasonable to define simple harmonic mo-
tion as x = a sin(kt + φ), the proof could
be so trivial as to be non-existant. In or-
der to proceed, I have taken the question
to mean that we are required to prove that
the motion satisfies the differential equation
definition of SHM.)

(b) The period of the motion is T = 2π × 10
π =

20s.

Amplitude is 4m.

(c) In the first two seconds the movement is
all in the same direction and the distance
moved is

d = x(2)− x(0)

= 4 sin
π

5
≈ 2.35m

If using technology, it’s probably simpler to
take a definite integral of the absolute value
of the velocity over the given interval:

With this approach there is no need to first
analyse whether the object changes direc-
tion during the interval under consideration:
the absolute value takes care of that. Be
warned, however, that handheld technology
may take longer than a few seconds to eval-
uate this.

8. (a) To prove: ẍ = −k2x
Proof:

ẋ =
d

dt
2 sin

πt

3

=
2π

3
cos

πt

3

ẍ =
d

dt

2π

3
cos

πt

3

= −2π2

9
sin

πt

3

= −π
2

32

(
2 sin

πt

3

)
= −

(π
3

)2
x

Taking k = π
3 this gives ẍ = −k2x. �
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Exercise 8A Solutions to A.J. Sadler’s

(b) The period of the motion is T = 2π × 3
π =

6s.

Amplitude is 2m.

(c) In the first two seconds the movement is
not all in the same direction so the distance
moved must be determined in two parts.

From t = 0 to t = T
4 = 1.5 seconds the body

moves through its amplitude: 2m.

From t = 1.5 to t = 2 seconds the body
moves back to x = 2 sin 2π

3 =
√

3, thus mov-

ing through a further distance of 2−
√

3m.

Hence the total distance moved is

d = (2) + (2−
√

3)

= (4−
√

3) m

(See the note to the previous question about
using technology.)

9. (a) To prove: ẍ = −k2x
Proof:

ẋ =
d

dt
3 sin

(
2t+

π

6

)
= 6 cos

(
2t+

π

6

)
ẍ =

d

dt
6 cos

(
2t+

π

6

)
= −12 sin

(
2t+

π

6

)
= −4

(
3 sin

(
2t+

π

6

))
= −22x

Taking k = 2 this gives ẍ = −k2x. �

(b) The period of the motion is T = 2π
2 = πs.

Amplitude is 3m.

(c) The body first reaches maximum displace-
ment when

3 sin
(

2t+
π

6

)
= 3

2t+
π

6
=
π

2

2t =
π

3

t =
π

6

From t = 0 to t = π
6 seconds the body moves

d = 3− 3 sin
(

2(0) +
π

6

)
= 1.5m

From t = π
6 to t = 1 seconds the body moves

a further

d = 3− 3 sin
(

2(1) +
π

6

)
≈ 1.26m (2d.p.)

Hence the total distance moved is

d = 1.5 + 1.26

= 2.76m (2d.p.)

If using technology:

10. (a) x = a sin(kt+ α)

a = 4

2π

k
= 2

k = π

2 = 4 sin(π(0) + α)

sinα =
1

2

α =
π

6

or α =
5π

6

v =
dx

dt
= 4π cos(πt+ α)

When t = 0,

v = 4π cosα

∴ α =
5π

6
(to make v negative)

x = 4 sin

(
πt+

5π

6

)

(b) v = 4π cos

(
πt+

5π

6

)
= 4π cos

(
π

6
+

5π

6

)
= 4π cosπ

= −4πms−1

∴ speed = 4πms−1
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11. (a) x = a sin(kt+ α)

a = 2

2π

k
=

2π

5
k = 5
√

2 = 2 sin(5(0) + α)

sinα =

√
2

2

α =
π

4

or α =
3π

4

v =
dx

dt
= 10 cos(5t+ α)

When t = 0,

v = 10 cosα

∴ α =
π

4
(to make v positive)

x = 2 sin
(

5t+
π

4

)
(b) v = 10 cos

(
5t+ π

4

)
which has an amplitude

of 10ms−1 so the greatest speed is 10ms−1.

(c) a =
dv

dt

= −50 sin
(

5t+
π

4

)
This has an amplitude of 50ms−2 so the
maximum accelleration is 50ms−2.

12. ẍ = −k2x
= −4x

∴ k = 2

x = 0.6 sin 2t

(a) x = 0.6 sin
2π

6

= 0.6 sin
π

3

= 0.3
√

3 m

(b) x = 0.6 sin
2π

3

= −0.3
√

3 m

(c) |x| = 0.3

x = ±0.3

0.6 sin 2t = ±0.3

sin 2t = ±0.5

2t ∈
{
π

6
,

5π

6
,

7π

6
,

11π

6
, . . .

}
t ∈
{
π

12
,

5π

12
,

7π

12
,

11π

12
, . . .

}
i. t = π

12 s

ii. t = 5π
12 s

iii. t = 7π
12 s

13. ẍ = −k2x
= −π2x

∴ k = π

x = −3 sinπt

(a) x = −3 sin
π

3

= −3
√

3

2
m

(b) v =
dx

dt
= −3π cosπt

when t =
1

3
,

v = −3π cos
π

3

= −3π

2
ms−1

(c) speed= |v| = 3π
2 ms−1

(d) |v| = 3π

2

v = ±3π

2

−3π cosπt = ±3π

2
cosπt = ±0.5

πt ∈
{
π

3
,

2π

3
,

4π

3
,

5π

3
, . . .

}
t ∈
{

1

3
,

2

3
,

4

3
,

5

3
, . . .

}
The body next has the same speed it had at
t = 1

3 s when t = 2
3 s.

14. A B C D E

-3 0 1 2 3

Without loss of generality, suppose that the par-
ticle is at point A when t = 0. Then

x = −3 cos kt

2π

k
= π

∴ k = 2

∴ x = −3 cos 2t

(a) x = 1

−3 cos 2t = 1

cos 2t = −1

3

t =
cos−1− 1

3

2
= 0.9553 . . .

≈ 0.96s
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(b) x = 2

−3 cos 2t = 2

cos 2t = −2

3

t =
cos−1− 2

3

2
= 1.1503 . . .

1.1503− 0.9553 = 0.1949

≈ 0.19s

(c) x = 3

−3 cos 2t = 3

cos 2t = −1

t =
π

2
= 1.5708 . . .

1.5708− 1.1503 = 0.4205

≈ 0.42s

Check: the total times from A to E should
be half the period: π

2 ≈ 1.57s–

0.96 + 0.19 + 0.42 = 1.57

(d) If the particle is moving left-to-right when it
passes D, the time to get back to D is double
the time needed to go from D to E (since it
moves from D to E and back again, and the
symmetry makes these times DE and ED
equal):

t = 2× 0.4205

= 0.84s

If the particle is moving right-to-left when
it passes D, the time to get back to D again
is a whole period less the D-E-D time, i.e.

t = π − 0.84

≈ 2.30s

15. -2

-1

1

2

t

x

π
8

π
4

3π
8

π
2

Find the time the body first reaches 1.5m away
from the mean position O and determine the
length of time between that point and when it
reaches maximum displacement. Then use the
symmetry of the sine curve to determine the to-

tal time.

2 sin 4t = 1.5

sin 4t = 0.75

4t = sin-1 0.75

t =
sin-1 0.75

4
≈ 0.212

π

8
− t ≈ 0.181

0.181× 4 ≈ 0.72s

16. ẍ = −k2x
ẍ = −4x

k = 2

x = a sin(2t+ α)

v = ẋ

= 2a cos(2t+ α)

(a) x = a sin(2t+ α)

0 = a sinα

α = 0

v = 2a cos(2t+ α)

4 = 2a cos 0

a = 2

∴ x = 2 sin 2t

(b) v = 2a cos(2t+ α)

0 = 2a cosα

α =
π

2
x = a sin(2t+ α)

4 = a sin
π

2
a = 4

∴ x = 4 sin
(

2t+
π

2

)
= 4 cos 2t

17. (a) Since the mass is at rest 2cm below equilib-
rium the amplitude of its motion is 2cm.

(b) k2 = 64

k = 8

period =
2π

k

=
π

4
s

(c) This represents a quarter of a full cycle and
takes a quarter of the period, i.e. π

16 s.

(d) The mass is at maximum speed when pass-
ing through the equilibrium point, so its
speed is

s = |ka|
= 8× 2

= 16cm/s
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(e) x = −2 cos 8t

v = 16 sin 8t

16 sin 8t = 8

sin 8t =
1

2

8t =
π

6

t =
π

48
s

18. (a) x = −4
√

3 sin 0− 4 cos 0

= −4

The object is 4m from O.

(b) To prove:
ẍ = −k2x

Proof:

x = −4
√

3 sin 2t− 4 cos 2t

ẋ = −8
√

3 cos 2t+ 8 sin 2t

ẍ = 16
√

3 sin 2t+ 16 cos 2t

= −4(−4
√

3 sin 2t− 4 cos 2t)

= −22x

as required, for k = 2. �

(c) This question is trivial to do using tech-
nology, as illustrated in previous questions.
This gives an answer of∫ 1.5

0

|dx
dt
| dt = 14.98m

To work this question without technology is
not within the scope of the course since it
requires (amongst other things) calculating
sin 3 and cos 3 which you are not expected
to do without a calculator.

Another approach using technology is to
graph the motion.

The object starts at x = −4, moves to the
maximum negative displacement of −8 then
comes back to x = 2.98 at t = 1.5. Thus the
distance is |−8−−4|+ |2.98−−8| = 14.98.

19. (a) p = x− 3

= 4 sinπt

ṗ = 4π cosπt

p̈ = −4π2 sinπt

= −π2p

(b) Period= 2π
π = 2s.

Amplitude= 4

(c) The mean value of sine is zero, so the mean
position of 3 + 4 sinπt is 3m.

(d) The maximum value of x occurs when
sinπt = 1:

x = 3 + 4× 1 = 7m

20. (a) s = x− 5

= −3 cos 2t

ṡ = 6 sin 2t

s̈ = 12 cos 2t

= −22s

(b) Period= 2π
2 = πs.

Amplitude= 3

(c) The mean value of cosine is zero, so the
mean position of 5− 3 cos 2t is 5m.

(d) The minimum value of x occurs when
sin 2t = 1:

x = 5− 3× 1 = 2m

21. Determine distance by integrating speed—the
absolute value of velocity.

22. x = a sin(kt+ α)

v = ka cos(kt+ α)

When x = 20, v = 30:

a sin(kt+ α) = 20

sin(kt+ α) =
20

a
ka cos(kt+ α) = 30

cos(kt+ α) =
30

ka

sin2(kt+ α) + cos2(kt+ α) = 1

400

a2
+

900

k2a2
= 1

400k2 + 900 = k2a2
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When x = 24, v = 14:

a sin(kt+ α) = 24

sin(kt+ α) =
24

a
ka cos(kt+ α) = 14

cos(kt+ α) =
14

ka

sin2(kt+ α) + cos2(kt+ α) = 1

576

a2
+

196

k2a2
= 1

576k2 + 196 = k2a2

and 400k2 + 900 = k2a2

∴ 576k2 + 196 = 400k2 + 900

176k2 = 704

k2 = 4

k = ±2

Period =
2π

2
= π s

Now 400k2 + 900 = k2a2

1600 + 900 = 4a2

a2 = 625

a = ±25

Amplitude = 25 m

23. x = a sin(kt+ α)

v = ka cos(kt+ α)

When x = 0.6, v = 0.75:

a sin(kt+ α) = 0.6

sin(kt+ α) =
0.6

a
ka cos(kt+ α) = 0.76

cos(kt+ α) =
0.75

ka

sin2(kt+ α) + cos2(kt+ α) = 1

0.36

a2
+

0.5625

k2a2
= 1

0.36k2 + 0.5625 = k2a2

When x = 0.39, v = 1.56:

a sin(kt+ α) = 0.39

sin(kt+ α) =
0.39

a
ka cos(kt+ α) = 1.56

cos(kt+ α) =
1.56

ka

sin2(kt+ α) + cos2(kt+ α) = 1

0.1521

a2
+

2.4336

k2a2
= 1

0.1521k2 + 2.4336 = k2a2

and0.36k2 + 0.5625 = k2a2

∴ 0.1521k2 + 2.4336 = 0.36k2 + 0.5625

0.2079k2 = 1.8711

k2 = 9

k = ±3

Period =
2π

3
s

Now 0.36k2 + 0.5625 = k2a2

3.24 + 0.5625 = 9a2

a2 = 0.4225

a = ±0.65

Amplitude = 65 cm

24. (a) To prove: ẍ = −k2x
Proof:

x = A cos kt

ẋ = −kA sin kt

ẍ = −k2A cos kt

= −k2x

as required. �
To prove: |x| ≤ |A cos 0|
Proof:

RHS = |A|
LHS = |A cos kt|

= |A||cos kt|
|cos kt| ≤ 1

∴ |A||cos kt| ≤ |A|
LHS ≤ RHS

as required. �

(b) Modelling the tide movement with SHM
gives a mean depth of 3+15

2 = 9m and an
amplitude of 15−3

2 = 6m. The period is dou-
ble the time between low and high tides, i.e.
6 1
3 × 2 = 12 2

3 hours. Hence

2π

k
= 12

2

3

=
38

3
38k = 6π

k =
3π

19

If we take 7am as our starting time (i.e.
t = 0 at 7am) the water depth is

d = 9− 6 cos
3πt

19

To determine the times when the water
depth is at least 5m, plot a graph of this
function and determine when it exceeds 5:
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This gives 1.70 ≤ t ≤ 10.97 representing
times (to the nearest 5 minutes) between
8:40am and 6:00pm.

Integration By Parts Extension Exercise

1. u = x
du

dx
= 1

dv

dx
= sinx v = − cosx

∫
x sinxdx = x(− cosx)−

∫
− cosxdx

= −x cosx+ sinx+ c

= sinx− x cosx+ c

2. u = x
du

dx
= 1

dv

dx
= cosx v = sinx

∫
x cosx dx = x sinx−

∫
sinx dx

= x sinx− cosx+ c

3. u = 3x
du

dx
= 3

dv

dx
= sin 2x v = −0.5 cos 2x

∫
3x sin 2x dx

= 3x(−0.5 cos 2x)−
∫

(−0.5 cos 2x)(3) dx

= −1.5x cos 2x+ 0.75 sin 2x+ c

=
3 sinx− 6x cos 2x

4
+ c

4. u = x
du

dx
= 1

dv

dx
= e2x v = 0.5e2x

∫
xe2x dx = x(0.5e2x)−

∫
0.5e2x dx

= 0.5xe2x − 0.25e2x

=
(2x− 1)e2x

4
+ c

5. u = lnx
du

dx
=

1

x
dv

dx
= x2 v =

x3

3

∫
x2 lnx dx =

x3 lnx

3
−
∫

x3

3x
dx

=
x3 lnx

3
−
∫
x2

3
dx

=
x3 lnx

3
− x3

9
+ c

=
x3(3 lnx− 1)

9
+ c

6. u = x
du

dx
= 1

dv

dx
= (x+ 2)5 v =

(x+ 2)6

6

∫
x(x+ 2)5 dx =

x(x+ 2)6

6
−
∫

(x+ 2)6

6
dx

=
x(x+ 2)6

6
− (x+ 2)7

42
+ c

=
(x+ 2)6(7x− (x+ 2))

42
+ c

=
(x+ 2)6(6x− 2)

42
+ c

=
(x+ 2)6(3x− 1)

21
+ c
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7. u = x
du

dx
= 1

dv

dx
=
√

2x+ 1 v =
2(2x+ 1)

3
2

3× 2

=
(2x+ 1)

3
2

3∫
x
√

2x+ 1 dx

=
x(2x+ 1)

3
2

3
−
∫

(2x+ 1)
3
2

3
dx

=
x(2x+ 1)

3
2

3
− 2(2x+ 1)

5
2

15× 2
+ c

=
5x(2x+ 1)

3
2 − (2x+ 1)

5
2

15
+ c

=
(2x+ 1)

3
2 (5x− (2x+ 1)

15
+ c

=
(2x+ 1)

3
2 (5x− 2x− 1)

15
+ c

=
(2x+ 1)

3
2 (3x− 1)

15
+ c

8. u = x2
du

dx
= 2x

dv

dx
= ex v = ex∫

x2ex dx = x2ex −
∫

2xex dx

The integral on the right hand side requires inte-
gration by parts again.

u = 2x
du

dx
= 2

dv

dx
= ex v = ex

∫
2xex dx = 2xex −

∫
2ex dx

= 2xex − 2ex + c

= 2ex(x− 1) + c

∴
∫
x2ex dx = x2ex − 2ex(x− 1) + c

= ex(x2 − 2x+ 2) + c

9. u = x2
du

dx
= 2x

dv

dx
= sinx v = − cosx∫

x2 sinx dx = −x2 cosx−
∫
−2x cosxdx

=

∫
2x cosxdx− x2 cosx

The integral on the right hand side requires inte-
gration by parts again.

u = 2x
du

dx
= 2

dv

dx
= cosx v = sinx

∫
2x cosxdx = 2x sinx−

∫
2 sinxdx

= 2x sinx+ 2 cosx+ c

∴
∫
x2 sinxdx = 2x sinx+ 2 cosx− x2 cosx+ c

10. The key to this problem is appropriate selection
of u and v so that differentiating one and in-
tegrating the other leaves an expression that is
more amenable to integration. Often this means
that we need to end up with a lower power of x.
Differentiation of ex

2

will not achieve this, so we
need to look to integrate this part of the expres-
sion.

u = x2
du

dx
= 2x

dv

dx
= 2xex

2

v = ex
2

∫
x3ex

2

dx =

∫
(x2)(2xex

2

) dx

= x2ex
2

−
∫

2xex
2

dx

= x2ex
2

− ex
2

+ c

= ex
2

(x2 − 1) + c

11. u = lnx
du

dx
=

1

x
dv

dx
= 1 v = x∫

lnxdx = x lnx−
∫
x

x
dx

= x lnx− x+ c

= x(lnx− 1) + c

12. u = sinx
du

dx
= cosx

dv

dx
= ex v = ex∫

ex sinx dx = ex sinx−
∫

ex cosx dx

The integral on the right needs to be done by
parts again. Are we going around in circles?
(You were warned these are sneaky!)

u = cosx
du

dx
= − sinx

dv

dx
= ex v = ex
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∫
ex cosx = ex cosx+

∫
ex sinxdx

∴
∫

ex sinxdx = ex sinx− ex cosx

−
∫

ex sinxdx

∴ 2

∫
ex sinxdx = ex sinx− ex cosx∫
ex sinxdx =

ex(sinx− cosx)

2
+ c

13. u = cos 2x
du

dx
= −2 sin 2x

dv

dx
= ex v = ex

∫
ex cos 2xdx = ex cos 2x−

∫
−2ex sin 2xdx

= ex cos 2x+ 2

∫
ex sin 2x dx

The integral on the right needs to be done by

parts again.

u = sin 2x
du

dx
= 2 cos 2x

dv

dx
= ex v = ex

∫
ex sin 2x = ex sin 2x−

∫
2ex cos 2xdx

= ex sin 2x− 2

∫
ex cos 2xdx

∴
∫

ex cos 2xdx = ex cos 2x+ 2

(
ex sin 2x

−2

∫
ex cos 2x dx

)
= ex cos 2x+ 2ex sin 2x

− 4

∫
ex cos 2xdx

∴ 5

∫
ex cos 2xdx = ex cos 2x+ 2ex sin 2x∫
ex cos 2xdx =

ex(cos 2x+ 2 sin 2x)

5
+ c

Miscellaneous Exercise 8

1. (c) BA =

[
−1 −2

1 0

] [
0 2 −1
3 2 0

]
=

[
0− 6 −2− 4 1 + 0
0 + 0 2 + 0 −1 + 0

]
=

[
−6 −6 1

0 2 −1

]
BA+ C =

[
−5 −6 1
−2 3 2

]
(f) BD =

[
−1 −2

1 0

] [
1
2

]
=

[
−1− 4
1 + 0

]
=

[
−5

1

]
BD +D =

[
−4

3

]
2. (a) For x < −6, |x + 6| = −(x + 6) and

|x− 2| = −(x− 2):

−(x+ 6) = 2− (x− 2)

−x− 6 = 2− x+ 2

−6 = 4 =⇒ no solution

For −6 ≤ x < 2, |x + 6| = x + 6 and
|x− 2| = −(x− 2):

x+ 6 = 2− (x− 2)

= 2− x+ 2

2x+ 6 = 4

x = −1

For x ≥ 2, |x+6| = x+6 and |x−2| = x−2:

x+ 6 = 2 + x− 2

6 = 0 =⇒ no solution

Single solution: x = −1.

(b) For x < −6, |x + 6| = −(x + 6) and
|x− 2| = −(x− 2):

−(x+ 6) = 10− (x− 2)

−x− 6 = 10− x+ 2

−6 = 12 =⇒ no solution
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For −6 ≤ x < 2, |x + 6| = x + 6 and
|x− 2| = −(x− 2):

x+ 6 = 10− (x− 2)

= 10− x+ 2

2x+ 6 = 12

x = 3 =⇒ outside the domain

For x ≥ 2, |x+6| = x+6 and |x−2| = x−2:

x+ 6 = 10 + x− 2

6 = 8 =⇒ no solution

No solution.

(c) For x < −6, |x + 6| = −(x + 6) and
|x− 2| = −(x− 2):

−(x+ 6) = 8− (x− 2)

−x− 6 = 8− x+ 2

−6 = 10 =⇒ no solution

For −6 ≤ x < 2, |x + 6| = x + 6 and
|x− 2| = −(x− 2):

x+ 6 = 8− (x− 2)

= 8− x+ 2

2x+ 6 = 10

x = 2 =⇒ outside the domain

For x ≥ 2, |x+6| = x+6 and |x−2| = x−2:

x+ 6 = 8 + x− 2

6 = 6 =⇒ all solution

The solution is x ≥ 2.

3.

[
2x 6

4 2y

]
+

[
3y 3
−3 −3x

]
=

[
7 9
1 22

]
[

2x+ 3y 9
1 2y − 3x

]
=

[
7 9
1 22

]
∴ 2x+ 3y = 7

and − 3x+ 2y = 22

[
2 3
−3 2

] [
x
y

]
=

[
7

22

]
[
x
y

]
=

1

13

[
2 −3
3 2

] [
7

22

]
=

1

13

[
−52

65

]
=

[
−4

5

]
∴ x = −4, y = 5

(You could, of course, use non-matrix techniques
to solve the simultaneous equations if you so
choose.)

4. PA = P + 2A

PA− P = 2A

P (A− I) = 2A

P = 2A(A− I)−1

= 2

[
2 −1
1 2

] [
1 −1
1 1

]−1
= 2

[
2 −1
1 2

]
1

2

[
1 1
−1 1

]
=

[
3 1
−1 3

]
5. A2 =

[
p −p
0 q

] [
p −p
0 q

]
=

[
p2 −p2 − pq
0 q2

]
detA = pq

pqA−1 =

[
q p
0 p

]
p2qA−1 =

[
pq p2

0 p2

]
A2 + p2qA−1 =

[
p2 −p2 − pq
0 q2

]
+

[
pq p2

0 p2

]
=

[
p2 + pq −pq

0 p2 + q2

]
[
p2 + pq −pq

0 p2 + q2

]
=

[
6 3
0 10

]
pq = −3

p2 + pq = 6

p2 − 3 = 6

p2 = 9

p = ±3

∴ q = ∓1

check: p2 + q2 = 10

9 + 1 = 10 ok.

∴ (p, q) ∈ {(3,−1), (−3, 1)}

6. Let A = (x, y) be some arbitrary point on the

x− y plane. The matrix

[
a b
ka kb

]
transforms

this point to A′ = (x′, y′), thus:[
x′

y′

]
=

[
a b
ka kb

] [
x
y

]
=

[
ax+ by

kax+ kby

]
=

[
ax+ by

k(ax+ by)

]
thus x′ = ax+ by

and y′ = k(ax+ by)

= kx′

Thus the transformed point satisfies the equation
y = kx and hence lies on the line as required. �
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7. (a) ẋ = 8 cos 4t

ẍ = −32 sin 4t

= −42x

Period=2π
4 = π

2 s.

When t = 0, x = 2 sin 0 = 0.

The mean position is at O (distance=0).

(b) ẋ = −15 sin 3t

ẍ = −75 cos 3t

= −32x

Period=2π
3 s.

When t = 0, x = 5 cos 0 = 5m.

The mean position is at O (distance=0).

(c) ẋ = 4 cos 2t− 8 sin 2t

ẍ = −8 sin 2t− 16 cos 2t

= −22x

Period=2π
2 = πs.

When t = 0, x = 2 cos 0 + 4 sin 0 = 2m.

The mean position is at O (distance=0).

(d) ẋ = 15 cos 5t

ẍ = −75 sin 5t

= −52(x− 1)

Period=2π
5 s.

When t = 0, x = 1 + 3 sin 0 = 1m.

The mean position of 3 sin 5t is 0, so the
mean position of 1 + 3 sin 5t is 1m from O.

8. The volume of any prism-like solid is equal to
the area of the base times the height. The height
here is 5m and the area of the base is determined
by

A = −
∫ π

0

− sinxdx

= − [cosx]
π
0

= −(−1− 1)

= 2m2

Thus the volume of sand required is 10m3.

9. First, rewrite each relation with x the dependent
variable:

x = y + 3

x = y2 + 1

Now find the points of intersection to determine
the bounds for our integrals:

y + 3 = y2 + 1

y2 − y − 2 = 0

(y − 2)(y + 1) = 0

y = −1

and y = 2

The region we want is right of the parabola and
left of the line, i.e. y2 + 1 ≤ x ≤ y + 3, so the
area is

A =

∫ 2

−1
(y + 3)− (y2 + 1) dy

=

∫ 2

−1
(y − y2 + 2) dy

=

[
y2

2
− y3

3
+ 2y

]2
−1

=

(
4

2
− 8

3
+ 4

)
−
(

1

2
+

1

3
− 2

)
=

10

3
−
(
−7

6

)
=

27

6

= 4.5 units2

10. (c) Let P0 represent the initial population:

P0 =


340
720
840
220
80



i. LP0 =


1922
204
504
672
198



≈


1920
200
500
670
200



ii. L10P0 =


3836
2213
1404
875
738



≈


3800
2200
1400
900
700


(d) i.

[
1 1 1 1 1

]
L19P0 = [25 775]

ii.
[

1 1 1 1 1
]
L20P0 = [28 839]

iii.
[

1 1 1 1 1
]
L29P0 = [80 618]

iv.
[

1 1 1 1 1
]
L30P0 = [90 367]

v.
[

1 1 1 1 1
]
L49P0 = [791 220]

vi.
[

1 1 1 1 1
]
L50P0 = [886 936]

95



Miscellaneous Exercise 8 Solutions to A.J. Sadler’s

(e)
P20

P19
= 1.119

P30

P29
= 1.121

P50

P49
= 1.121

This suggests an annual growth rate of
12.1%.

(f)
1

1.121
= 0.892

1− 0.892 = 0.108

The harvesting rate should be 10.8%.

(g) (0.95L)5P0 =


2067
873
442
515
450



≈


2050
850
450
500
450


11. One approach is to use Euler’s formula:

L.H.S. = (cos θ + i sin θ)n

=
(
eiθ
)n

= einθ

= cosnθ + i sinnθ

= R.H.S.

�

12. This is a pretty standard kind of exam question.

cos 4θ + i sin 4θ = (cos θ + i sin θ)
4

= cos4 θ + 4i cos3 θ sin θ

+ 6i2 cos2 θ sin2 θ + 4i3 cos θ sin3 θ

+ i4 sin4 θ

= cos4 θ + 4i cos3 θ sin θ

− 6 cos2 θ sin2 θ − 4i cos θ sin3 θ

+ sin4 θ

= cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

+ i(4 cos3 θ sin θ − 4 cos θ sin3 θ)

Equating real parts,

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

= cos4 θ − 6 cos2 θ(1− cos2 θ)

+ (1− cos2 θ)2

= cos4 θ − 6 cos2 θ + 6 cos4 θ

+ 1− 2 cos2 θ + cos4 θ

= 8 cos4 θ − 8 cos2 θ + 1

13. Since the particle has positive acceleration for all
t ≥ 0 and positive initial velocity, its velocity is
always positive and the distance travelled in the
third second is the difference between its position

at t = 2 and at t = 3.

v(t) =

∫
a(t) dt

=

∫
(6t+ 4) dt

= 3t2 + 4t+ c

x(t) =

∫
v(t) dt

=

∫
(3t2 + 4t+ c) dt

= t3 + 2t2 + ct+ k

x(3)− x(2) = 32

(45 + 3c+ k)− (16 + 2c+ k) = 32

29 + c = 32

c = 3

∴ v(1) = 10 ms−1

14. (a) Let a be the surface area and s the side
length.

a = 6s2

da

ds
= 12s

δa

δs
≈ 12s

δa ≈ 12sδs

= 12× 5× 0.2

= 12 cm2

(b) Let v be the volume and s the side length.

v = s3

dv

ds
= 3s2

δv

δs
≈ 3s2

δv ≈ 3s2δs

= 3× 25× 0.2

= 15 cm3

15. (a)
dC

dx
=

200

1 + x

(b)
200

1 + x
= 2

1 + x = 100

x = 99

C = 600 + 200 ln(1 + 99)

= 1521.03

C

x
=

1521.03

99
= $15.36 per unit

16.
dA

dt
= −0.005A

A = A0e−0.005t
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The half-life represents the time when A =
0.5A0:

0.5A0 = A0e−0.005t

e−0.005t = 0.5

−0.005t = ln 0.5

= − ln 2

t =
ln 2

0.005
≈ 139 years

17. C = C0e−kt

0.5C0 = C0e−5700k

−5700k = ln 0.5

= − ln 2

k =
ln 2

5700

∴ C = C0e−
t ln 2
5700

= C0(eln 2)−
t

5700

= C02−
t

5700

Given that 65% has decayed, C = 0.35C0,

0.35C0 = C02−
t

5700

2−
t

5700 = 0.35

− t

5700
= log2 0.35

t = −5700 log2 0.35

≈ 8 600 years

18. C = C0e−kt

0.5C0 = C0e−12k

−12k = ln 0.5

= − ln 2

k =
ln 2

12

∴ C = C0e−
t ln 2
12

= C0(eln 2)−
t
12

= C02−
t
12

Given C = 0.05C0,

0.05C0 = C02−
t
12

2−
t
12 = 0.05

− t

12
= log2 0.05

t = −12 log2 0.05

≈ 52 days

19. The proposition to prove is:

5n + 3× 9n = 4a, a, n ∈ I, n ≥ 0

Proof:

For n = 0:

50 + 3× 90 = 1 + 4

= 4

Assume the proposition is true for n = k, i.e.:

5k + 3× 9k = 4a

for some integer a.

Then for n = k + 1,

5k+1 + 3×9k+1

= 5× 5k + 3× 9× 9k

= (4 + 1)× 5k + (8 + 1)× 3× 9k

= 4× 5k + 8× 3× 9k + 5k + 3× 9k

= 4(×5k + 2× 3× 9k) + 4a

= 4(×5k + 2× 3× 9k + a)

Hence if the proposition is true for n = k then it
is also true for n = k + 1, and since it is true for
n = 0 it is true for all integer n ≥ 0 by mathe-
matical induction. �

20. (a) v =
dx

dt

=
9

1 + t
− 4

v = 0

9

1 + t
− 4 = 0

9

1 + t
= 4

9 = 4(1 + t)

4 + 4t = 9

4t = 5

t = 1.25s

(b) a =
dv

dt

= − 9

(1 + t)2

v = a

9

1 + t
− 4 = − 9

(1 + t)2

−9(1 + t) + 4(1 + t)2 = 9

4t2 + 8t+ 4− 9t− 9 = 9

4t2 − t− 14 = 0

(4t+ 7)(t− 2) = 0

t = 2

(discarding the negative solution for t be-
cause we are given t ≥ 0).

21. Repeatedly rotate 90◦ anti-clockwise to give z2 =
−b+ ai, z3 = −a− bi, z4 = b− ai.
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22. (a) A =

∫
6e2t dt

= 3e2t + c

4 = 3e0 + c

c = 1

A = 3e2t + 1

(b) A = 3e1 + 1

= 3e + 1

(c) δA ≈ dA

dt
δt

= 6e0 × 0.01

= 0.06

23. Starting from De Moivre’s Theorem,

(cos θ + i sin θ)n = cosnθ + i sinnθ

Let n = 2

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ

cos2 θ + 2i cos θ sin θ + i2 sin2 θ = cos 2θ + i sin 2θ

cos2 θ − sin2 θ + 2i cos θ sin θ = cos 2θ + i sin 2θ

Equating real parts gives

cos2 θ − sin2 θ = cos 2θ

Equating imaginary parts gives

2 cos θ sin θ = sin 2θ

as required. �

24. (a) If you recognise this as being of the form∫
(f(x))

n
f ′(x) dx where f(x) = lnx then

this can be done by inspection: no working
required.

(b) This can also be done by inspection.

(c)

∫
(lnx4)

x
dx =

∫
4 lnx

x
dx

= 2(lnx)2 + c

25. (a) T−1 =
1

3

[
0 3
1 −1

]
A = T−1A′

=
1

3

[
0 3
1 −1

] [
−1

2

]
=

[
2
−1

]
B = T−1B′

=
1

3

[
0 3
1 −1

] [
10
−2

]
=

[
−2

4

]
C = T−1C ′

=
1

3

[
0 3
1 −1

] [
−4
−4

]
=

[
−4

0

]
The coordinates of A, B and C are (2,−1),
(−2, 4) and (−4, 0) respectively.

(b) |detT | = 3

-4 -2 2 4 6 8 10

-4

-2

2

4

x

y

A

A’

B

B’

C

C’

Let |4ABC| represent the area of triangle
ABC. We can determine the area of each tri-
angle by considering its enclosing rectangle
and subtracting the right-triangular regions
outside the triangle.

|4ABC| = 6× 5

− 2× 4

2
− 4× 5

2
− 6× 1

2

= 13units2

|4A′B′C ′| = 14× 6

− 3× 6

2
− 11× 4

2
− 14× 2

2

= 39units2

|4A′B′C ′| = 3|4ABC|

26. (a) v(t) =

∫
0.1e0.1t dt

= e0.1t + c

v(0) = 0

e0 + c = 0

c = −1

v(t) = e0.1t − 1

v(10) = (e− 1) ms−1
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(b) x(t) =

∫
(e0.1t − 1) dt

= 10e0.1t − t+ c

x(0) = 0

10e0 − 0 + c = 0

c = −10

x(t) = 10e0.1t − t− 10

x(10) = (10e− 20) m

(c) Distance travelled is equal to the difference
in displacement, provided there is no change
in sign in velocity. v = e0.1t − 1 is positive
for all t > 0 so

d(T ) = x(T + 1)− x(T )

= 10e0.1(T+1) − (T + 1)− 10

− (10e0.1T − T − 10)

= 10e0.1(T+1) − 1− 10e0.1T

= 10e0.1e0.1T − 10e0.1T − 1

= (10e0.1T (e0.1 − 1)− 1) m

(d) The third second means from t = 2 to t = 3,
so we want d(2):

d(2) = 10e0.2(e0.1 − 1)− 1

= 0.285 m

(e) d(9) = 10e0.9(e0.1 − 1)− 1

= 1.587 m

27. Although this presents itself as a transition ma-
trix question, it can be answered more intuitively.
The long-term distribution will be that distribu-
tion that results in a steady state, i.e. when the
6% of the birds at A who switch to B are bal-
anced by the 4% of the birds at B who switch to
B.

Let a be the number of birds at A.

Let b be the number of birds at B.

0.06a = 0.04b

1.5a = b
a

a+ b
=

a

a+ 1.5a

=
1

2.5
= 0.4

Forty percent of the birds will be at A in the long
term.

Here is the matrix approach:

T =

From
A B

To

[ ]
A 0.94 0.04
B 0.06 0.96

T

[
a
b

]
=

[
a
b

]
0.94a+ 0.04b = a

0.06a+ 0.96b = b

−0.06a+ 0.04b = 0

0.06a− 0.04b = 0

b = 1.5a
a

a+ b
=

a

a+ 1.5a

=
1

2.5
= 0.4

Alternatively, if using technology, once you’ve
formed T , simply raise it to increasingly high
powers until the two columns are sufficiently
identical and interpret the results.

28. (a)

∫
sin3 xdx =

∫
sin2 x sinxdx

=

∫
(1− cos2 x) sinxdx

=

∫
(sinx− cos2 x sinx) dx

= − cosx+
cos3 x

3
+ c

(b)

∫
4 sin2 xdx =

∫
−2(−2 sin2 x) dx

= −2

∫
(1− 2 sin2 x− 1) dx

= −2

∫
(cos 2x− 1) dx

= −2

(
sin 2x

2
− x
)

+ c

= 2x− sin 2x+ c

29. (a) No working required.

(b) u = 4x

d

dx

∫ 4x

1

et
2

dt =
du

dx

d

du

∫ u

1

et
2

dt

= 4eu
2

= 4e(4x)
2

= 4e16x
2
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30. M = M0e−kt

0.5M0 = M0e−30k

−30k = ln 0.5

= − ln 2

k =
ln 2

30

∴ M = M0e−
t ln 2
30

= M0(eln 2)−
t
30

= M02−
t
30

Given M0 is 20 times the safe level, we need
M = 0.05M0,

0.05M0 = M02−
t
30

2−
t
30 = 0.05

− t

30
= log2 0.05

t = −30 log2 0.05

≈ 130 years

31. (a) There are two paths from A: to D with
probability 0.7 and to B with probability
p. Since the probabilities must add to 1,
p = 0.3. Similarly there are two paths from
C: to D with probability 0.4 and to B with
probability q, giving q = 0.6.

(b) Let T be the transition matrix as follows:

T =

From
A B C D

To




A 0 0.4 0 0.4
B 0.3 0 0.6 0.5
C 0 0.1 0 0.1
D 0.7 0.5 0.4 0

Let S0 be the initial state matrix:

S0 =


1000

0
0
0


After one period,

S1 = TS0

=


0

300
0

700


That is, 300 people at B and 700 at D.

(c) S2 = T 2S0

=


400
350
100
150


That is, 400 people at A, 350 at B, 100 at
C and 150 at D.

(d) S3 = T 3S0

=


200
255
50

495


That is, 200 people at A, 255 at B, 50 at C
and 495 at D.

(e) T 20S0 =


267
302
67

364



T 21S0 =


267
302
67

364


In the long term there are expected to be
267 people at A, 302 at B, 67 at C and 364
at D.

Alternatively, solve

T


a
b
c
d

 =


a
b
c
d



T


a
b
c
d

−

a
b
c
d

 =


0
0
0
0



(T − I)


a
b
c
d

 =


0
0
0
0


−a+ 0.4b+ 0.4d = 0

0.3a− b+ 0.6c+ 0.5d = 0

0.1b− c+ 0.1d = 0

0.7a+ 0.5b+ 0.4c− d = 0

and a+ b+ c+ d = 1000

(Actually one of the first four of these five
equations is redundant and can be left out
when solving.)

This gives us

a =
800

3

b =
2720

9

c =
200

3

d =
3280

9

Although you should be able to solve four
equations in four unknowns, it’s difficult to
envisage a situation where you would need
to do that without the assistance of appro-
priate technology. With that in mind, the
simpler first approach is probably more ap-
propriate.
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32. There are several conjectures that could be made
here. This solution addresses only the most ob-
vious.

The initial conjecture might deal with only two,
three and four digit numbers:

Conjecture: The difference between a 2-, 3- or 4-
digit natural number and its reflection is a mul-
tiple of 9 (where a number’s reflection is another
number with the same digits in reverse order).

The obvious extension is to consider numbers
with more digits.

Conjecture: The difference between any natural
number and its reflection is a multiple of 9.

Test with some five digit numbers:

|12345− 54321| = 41976 = 9× 4664

|10209− 90201| = 79992 = 9× 8888

|92654− 45629| = 47025 = 9× 5225

These support the conjecture.

Proof: For two digit numbers, let a and b be
single-digit natural numbers. Any two digit nat-
ural number p can be represented as

p = 10a+ b

and the reflection of p as

pR = 10b+ a

This gives the difference as

|p− pR| = |10a+ b− (10b+ a)|
= |9a− 9b|
= 9|a− b|

Thus the difference is 9 times the difference be-
tween the two digits: a multiple of 9 as required.

For three digit numbers, let a, b and c be single
digit natural numbers. Any three digit natural
number p can be represented as

p = 100a+ 10b+ c

and the reflection of p as

pR = 100c+ 10b+ a

This gives the difference as

|p− pR| = |100a+ 10b+ c− (100c+ 10b+ a)|
= |99a− 99c|
= 99|a− c|

Thus the difference is 99 times the difference be-
tween the first and last digits: a multiple of 9 as
required.

(A four-digit proof could be given next, but let’s
be more ambitious.)

Now consider the conjecture for n-digit natural
numbers. Assume the conjecture to be true for
any number p with k digits, that is

p− pR = 9d

for some integer d.

Let a and b be single digit natural numbers. If
we put a before the digits of p and put b after,
we create a new natural number q having k + 2
digits:

q = 10k+1a+ 10p+ b

and the reflection of q is

qR = 10k+1b+ 10pR + a

Then

|q − qR|
= |10k+1a+ 10p+ b− (10k+1b+ 10pR + a)|
= |(10k+1 − 1)a+ 10(p− pR)− (10k+1 − 1)b|
= |(10k+1 − 1)(a− b) + 90d|

One less than any positive power of 10 is a multi-
ple of 9 (which we could also prove by induction,
but we take as self-evident here) so we can con-
clude that if the conjecture is true for numbers
having k digits then it is also true for numbers
having k+2 digits. Since we have established the
conjecture for numbers having 2 and 3 digits, it
is proven for all numbers of 2 or more digits by
mathematical induction. �

33.

(
z1
z2z3

)−3
=

( √
6 cis 5π

6

(2 cis π2 )(3 cis 2π
3 )

)−3

=

(√
6 cis 5π

6

6 cis 7π
6

)−3

=

(
cis−π3√

6

)−3
= 6
√

6 cisπ

= −6
√

6

34. (a) No working required.

(b) z14 = (
√

2 cis−π
4

)14

= 2
14
2 cis−14π

4

= 27 cis−7π

2

= 128 cis
π

2
= 128i
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35. z = −1 +
√

3i

=

√
(−1)2 + (

√
3)2 cis tan-1

√
3

−1

(2nd quadrant)

= 2 cis
2π

3

z̄ = 2 cis−2π

3
1

z̄
=

1

2
cis

2π

3(
z +

1

z̄

)4

=

(
2 cis

2π

3
+

1

2
cis

2π

3

)4

=

(
5

2
cis

2π

3

)4

=
625

16
cis

8π

3

=
625

16
cis

2π

3(
z − 1

z̄

)4

=

(
2 cis

2π

3
− 1

2
cis

2π

3

)4

=

(
3

2
cis

2π

3

)4

=
81

16
cis

8π

3

=
81

16
cis

2π

3

36. Let d be the distance AB.

sin θ =
h

50

cos θ
dθ

dt
=

1

50

dh

dt
dθ

dt
=

1.2

50 cos θ

d2 + h2 = 2500

2d
dd

dt
+ 2h

dh

dt
= 0

d
dd

dt
+ h

dh

dt
= 0

d
dd

dt
+ 1.2h = 0

dd

dt
= −1.2h

d

When h = 40,

d =
√

2500− 1600

= 30 m

cos θ =
30

50
= 0.6

dθ

dt
=

1.2

50 cos θ

=
1.2

30
= 0.04 radians per second

dd

dt
= −1.2h

d

= −1.2× 40

30

= −1.6 ms−1

B approaches A at 1.6 metres per second.

37. (a) 12× 5 000 + 5× 8 000 = $100 000

(b) AD = 12−DC

= 12− 5

tan θ

DB =
5

sin θ
C = 5 000AD + 8 000DB

= 5 000

(
12− 5

tan θ

)
+ 8 000

(
5

sin θ

)
= 60 000− 25 000

tan θ
+

40 000

sin θ

as required.

(c) Minimum cost will be at one or other ex-
tremes of the domain, or where dC

dθ = 0.

Extremes are where D is coincident with
point C—with cost of $100 000 as seen in
part (a)—or where D is coincident with
point A, in which case the cost is

8 000
√

52 + 122 = $104 000

dC

dθ
=

25 000

tan2 θ cos2 θ
− 40 000 cos θ

sin2 θ

=
25 000

sin2 θ
− 40 000 cos θ

sin2 θ

Setting dC
dθ = 0 gives

25 000

sin2 θ
− 40 000 cos θ

sin2 θ
= 0

25 000− 40 000 cos θ = 0

cos θ =
25 000

40 000
= 0.625

θ = 51◦
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C = 60 000− 25 000

tan 51◦
+

40 000

sin 51◦

= $91 000

38. For particle A, the amplitude of the displacement
gives c = 5.

The velocity for particle A is

v = k1c cos k1t

and from the graph,

k1c = 10

k1 = 2

Period =
2π

k1
= π s

For particle B,

v = k2d cos k2t

a = −k22d sin k2t

k2d = 3

k22d = 1.5

k2 = 0.5

d = 6

Period =
2π

k2
= 4π s

Note: the answer of k1 = 1 in Sadler is an error.

39. Let y be the length of the shadow and let x be
the distance that has been run.

(a)

4.2m

1.95m

24m x y

y

24 + x+ y
=

1.95

4.2

4.2y = 1.95(24 + x+ y)

2.25y = 1.95x+ 46.8

y =
13

15
x+

937

45
dy

dx
=

13

15
dy

dt
=

dy

dx

dx

dt

=
13

15
× 5

=
13

3
m/s

(b) The geometry is exactly the same as in (a)
except that the sign of x is reversed. The
length of the shadow changes at the same
speed, but now it is getting shorter at 13

3
m/s instead of getting longer.

(c) After the runner has travelled x metres,
the distance from the lamppost is given by
Pythagoras’ Theorem:

4.2m

1.95m

√
242 + x2 m y

y√
242 + x2 + y

=
1.95

4.2

4.2y = 1.95(
√

242 + x2 + y)

2.25y = 1.95
√

242 + x2

y =
13
√

242 + x2

15
dy

dx
=

13x

15
√

242 + x2

dy

dt
=

dy

dx

dx

dt

=
13x

15
√

242 + x2
× 5

=
13x

3
√

242 + x2

When t = 2, x = 10

dy

dt
=

130

3
√

242 + 102

=
5

3
m/s

40. (a) Let U be the amount used in millions of
tonnes, then

R = 5e0.08t

U =

∫ 10

0

R dt

=

∫ 10

0

5e0.08t dt

=

[
5e0.08t

0.08

]10
0

=
[
62.5e0.08t

]10
0

= 62.5(e0.8 − e0)

= 76.60 million tonnes

(b)
dA

dt
= −5e0.08t

A(t) =

∫
−5e0.08t dt

= −62.5e0.08t + c

A(0) = 200

200 = −62.5e0 + c

c = 262.5

A(t) = 262.5− 62.5e0.08t
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Solving for t when A(t) = 0,

262.5− 62.5e0.08t = 0

62.5e0.08t = 262.5

e0.08t = 4.2

0.08t = ln(4.2)

t =
ln(4.2)

0.08
≈ 17.9

The resource will be exhausted before the
end of the eighteenth year.

41. (a) x = sinu dx = cosudu

u = sin-1 x∫
1√

1− x2
dx =

∫
cosu√

1− sin2 u
du

=

∫
cosu√
cos2 u

du

=

∫
cosu

|cosu|
du

= u+ c

= sin-1 x+ c

Note that it is safe to disregard the abso-
lute value since we can cover all permissable
values of x by restricting u to first or fourth
quadrants where cosu ≥ 0.

(b) x = 5 sinu dx = 5 cosudu

u = sin-1 x

5∫
1√

25− x2
dx =

∫
5 cosu√

25− 52 sin2 u
du

=

∫
5 cosu√
25 cos2 u

du

=

∫
5 cosu

|5 cosu|
du

= u+ c

= sin-1 x

5
+ c

(c) x =
3

2
sinu dx =

3

2
cosudu

u = sin-1 2x

3∫
1√

9− 4x2
dx =

∫ 3
2 cosu√

9− 4
(
3
2

)2
sin2 u

du

=

∫ 3
2 cosu
√

9 cos2 u
du

=

∫ 3
2 cosu

|3 cosu|
du

=
u

2
+ c

=
1

2
sin-1 2x

3
+ c

(d) x = sinu dx = cosudu

u = sin-1 x

∫ √
1− x2 dx =

∫ √
1− sin2 u cosudu

=

∫ √
cos2 u cosudu

=

∫
cos2 udu

=
1

2

∫
(2 cos2 u− 1 + 1) du

=
1

2

∫
(cos 2u+ 1) du

=
sin 2u

4
+
u

2
+ c

=
2 sinu cosu

4
+
u

2
+ c

=
sinu

√
1− sin2 u

2
+
u

2
+ c

=
x
√

1− x2
2

+
sin-1 x

2
+ c

(e) x = 2 sinu dx = 2 cosudu

u = sin-1 x

2

∫ √
4− x2 dx

=

∫ √
4− 4 sin2 u(2 cosu) du

=

∫
2
√

4 cos2 u cosudu

=

∫
4 cos2 udu

= 2

∫
(2 cos2 u− 1 + 1) du

= 2

∫
(cos 2u+ 1) du

= sin 2u+ 2u+ c

= 2 sinu cosu+ 2u+ c

= 2 sinu
√

1− sin2 u+ 2u+ c

= x

√
1− x2

4
+ 2 sin-1 x

2
+ c

=
x
√

4− x2
2

+ 2 sin-1 x

2
+ c
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(f) x = 2 cosu dx = −2 sinudu

u = cos-1
x

2∫ √
4− x2 dx

=

∫ √
4− 4 cos2 u(−2 sinu) du

=

∫
−2
√

4 sin2 u sinudu

=

∫
−4 sin2 udu

= 2

∫
(1− 2 sin2 u− 1) du

= 2

∫
(cos 2u− 1) du

= sin 2u− 2u+ c

= 2 sinu cosu− 2u+ c

= 2
√

1− cos2 u cos−2u+ c

= x

√
1− x2

4
− 2 cos-1

x

2
+ c

=
x
√

4− x2
2

− 2 cos-1
x

2
+ c

(Comparing (e) and (f) might suggest that

sin-1 x = − cos-1 x

but this is not the case because the con-
stants of integration in these two answers
are different.)
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